SUBSEQUENCES OF NORMAL SEQUENCES

BY
TETURO KAMAE

ABSTRACT

In this paper, we characterize a set of indices T = {T(O)<t(1) <} such
that for any normal sequence (x(0), ®(1),:++) of a certain type, the subsequence
(a(t(0)), a(T(1)), -+ ) is a normal sequence of the same type. Assume that
limy_, 7(n)/n < 00. Then, we prove that T has this property if and only if the
0-1 sequence (B, (0),0,(1),--+), where 6,(i)=1 or O according as i €{ 7(j); /=0,
l,---} or not, is completely deterministic in the sense of B. Weiss.

1. Introduction

Let £ be any compact metric space. Let N ={0,1,2,---} be the set of non-
negative integers. By ¥, we mean the product space of I with the product topo-
logy. The i-th coordinate (ie N) of aeX¥ is denoted by a(i). An element of
Z¥ is called a sequence. Let T be the shift on Z¥; (Ta)(i) = a(i + 1) for any
aeX¥ and ieN.

By a measure on a topological space, we always mean a probability Borel
measure. Let W be an arbitrary compact space and let v, (n =0,1,---) and v be
measures on W. We say that v, converges weakly [11]to v as n — o0, and denote
w—lim,., v,=v, if for any real-valued continuous function f on W, [fdv,
converges to [fdv as n— oo, For xe W, 8, is the unit measure at x. By a non-
degenerate measure on W, we mean a measure which is not a unit measure.

Let € X", Let Z, denote the family of all infinite subsets S of N such that

(1.1) WL=w- lim 1 Orig
nes I
n=*c0

exists. Note that =, # ¢ for any aeZ" since the space of measures on a compact
metric space is compact in the topology of weak convergence (see [11]). Also, note
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that 43 is a T-invariant measure for any «€Z" and SeE, We call aeZ¥ a
stochastic sequence [3] (or sometimes a quasi-regular point in Z¥ with respect to
T [9)) if NeZ,. In this case, we denote u, = uY. Let P be a non-degenerate
measure on X. A stochastic sequence a X" is called a P-normal sequence if u,
equals P?, the product measure of P on Z". Note that if Z = {0,1,.--,» — 1} and
P{iY)=1/rfori=0,1,---,r — 1, then the notion of P-normal sequence coincides
with the usual notion of r-adic normal sequence. The set of all P-normal sequences
is denoted by Nor . A strictly increasing function from N to N is called a selection
function. Let t be a selection function. For a € Z¥, the subsequence of o selected
by tis defined by (« o 7) (i) =a(z(i)) for any i € N and denoted by «o7. Following
von Mises, a € XV is called a t-collective if

n—1 n-1
(1.2) w—lm — X § =w—1lim — X §,u)
n— o i=0 n—o i=0

Our problem is to characterize a selection function 7 which satisfies the following
conditions. Denote Norpo = {a0 1; a € Norp}.

~ ConpITION 1. Any o€ Norp is a t-collective.
ConpITION 2, Norpo 1 < Norp.
ConpItioN 3. Norpo = Norp.

Clearly, Condition 3 implies Condition 2. It is also easy to verify that Condition 2
implies Condition 1.

In this paper, we prove that each of the above three conditions is equivalent to
Condition 4 stated below under a reasonable restriction that lim,_, , ©(n)/n < ©©
(Theorem 4). It should be remarked that the fact that Condition 4 implies Con-
dition 2 under the restriction stated above was already obtained by Weiss [14]

in 1971,
To state Condition 4, some more notions are necessary. For a selection function

7, denote by 0,€ {0,1}" the 0-1 sequence defined by

(1.3)

1 if ie{t(j);je N}
8.(i) = { (ieN).

0 else

That is, 6 (i) = 1 if and only if the i-th coordinate is selected as a subsequence by
the selection function 1. For a T-invariant measure u on {0, 1}", where T is the
shift on {0, 1}", the entropy of the measure-preserving transformation T on the
measure space ({0, 1}", y) is denoted by h(T). That is,
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(1.9 h(T) = lim L 2 — T, logu(Ty),

asa N zefoagm

where for f = (603 él’ Ty fn—l) € {0’ l}n,

(L.5) Iy ={Be{0,1}"; f() =& for i=0,1,--,n—1}.

The above limit is known to exist [2]. Following [14], Be{0,1}" is said to be
completely deterministic if h(T)=0 for any ye{y,f; SeZ,}. Now, we state
Condition 4.

ConpiTION 4. 0, is completely deterministic.

Note that Condition 4 is indifferent to what Z and P are. This condition is not
only simple but also easy to check. Various types of sequences are known to be
completely deterministic (Example 1). It seems that the notion of completely
deterministic 0-1 sequence has some significance from the constructive point of
view. In fact, we prove some closure properties of the class of completely deter-
ministic 0-1 sequences under operations to construct a new sequence from other
sequences {§5).

We also remark that Theorem 2 is a sort of extension theorem concerning
invariant measures and has some applications to ergodic theory, which will be
discussed elsewhere.

Let us explain some notation used in this paper. By Z, Z, and Z,, we always
represent compact metric spaces. Note that the product space =¥ is also a compact
metric space. As a topology on a finite set, we always consider the discrete topology.
We use the same notation T for shifts on different spaces. The shift on a product
space V¥ x =¥ is defined by T(e, f) = (Ta, TB), where acXy and feX. Let W
be any compact space. By C(W), we mean the Banach space consisting of all
real-valued continuous functions on W with the norm l| f || = sup, «w|f(x)|. Let
g < p be non-negative integers. We consider C(Z7) as a subspace of C(Z) and
C(Z") identifying fe C(Z% with the functions ({o,**,&p-1) = f(&o,++, &,-1) and
a— f((0), -+, a(q — 1)), where (o, &,-1) €ZF and aeZ”, respectively. Also,
C(ZMy and C(ZY) are considered as subspaces of C(Z] x Z3) in the same manner.
Let v; (i = 1,2) be a measure on 2N, By v, X v,, we msan the product measure of
v, and v, on £} x £}, For a measure v on Z¥ x Z¥, the marginal distribution on
=¥ (i = 1,2) is denoted by v/Z/.

For a subset E of a set X, E€ denotes the complement of E in X. For a finite
set E, | E| denotes the number of elements in E. For ne N, denote
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N,={0,1,---,n—1}.
For an infinite subset S of N and a subset E of N, we denote

o(F) = lim —|N,NE|
nes h
n—w

os(E) = lim —I—IN,,nE]
nes I
n—>aw

o(E) = ay(E).

In the rest of this section, we list up fundamental properties about weak con-
vergence of measures which will be often used in the following. See [11] for the
proofs. Let W be any compact metric space. Then, C(W) has a countable base as
a topological vector space. Let v, (ne N) and v be measures on W. Then,
w—lim,_ v, =v if and only if lim,., [fdv,= [fdv for any f belonging to a
base of W. Assume that w—lim,_ v, =v. Then, for any open set D of W,
lim, ., ,, v,(D) = v(D). Also, for any bounded real-valued function f on W which is
continuous at almost all points with respect to v, it holds that lim,., [ fdv,
= [ fdv. Let y be a mapping from W to another compact metric space W' which
is continuous at almost all points with respect to v. Then, vo ¢ ™! = w~lim

(1.6)

n—+ o

(v,o¥™ 1), where voy s are the induced measures on W’. Particularly,
B an /2N = 13, for i =1,2, where (¢;,0;)€Z] x I} and S€E,, ,,. Let u be a
T-invariant measure on =V, Then,

(L.7) p{xeZV; y,=p})=10r 0

according to whether p is ergodic with respect to T or not [9].

2, Sequences and invariant measures

LemmA 2.1. Let o;€ZV (i = 1,2) be stochastic sequences such that Bay = Moy
Let D be a subset of N such that

Q.0 " o({i;ieD,i+1eD}=0.
Let D={dy<dy <} and D°={dy < d <---}. Define BeZ" by

2.2)

() ifi= dj
BG) = { (ieN).

() ifi=dj
Then, B is a stochastic sequence such that pg = p, (i =1,2).

Proor. It is sufficient to prove that
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@3 im LS srp = | sa,
=0

o B
for any g € N and fe C(Z9, since U, 2, C(Z%) is dense in C(EV). Let fe C(Z7).Let
(2.9 E={ieN;{i,i+1,---,i + g — 1} is contained either in D or in D}.
It follows from (2.1) that ¢(E) = 1. For i€ N, denote

1 ifieD
ui={

2 if ieD",

v,() = |DNN,|, and
v,(i) = |D°NNy.
Then, from (2.2) and (2.4), for any i € E, we have
Therefore, f(T B) =f(T*%,).

n—1 n—1
(T = X fT("Pa,)+ o(n)
1=0 i=0

vi(n) v2(n

= X f(T'y) + 2) f(T'2,) + o(n)
i=0 1=

0o

= 0,(n) f Fdps, + 0(0,(n)) + vz(n) f fdpa, + 0(o3(n)) + o)

= nffdu,l + o(n).
This completes the proof of (2.3).

THEOREM 1. Let aeX¥ and Se =, assumeZthat S is ergodic with respect
to T. Then, there exists a stochastic sequence BeX" such that
os({i; a(i) = (D} =1
(and hence 1S = pp).
The idea of the proof. Let v be any ergodic measure on Z¥. Then, for any ne N,
any open neighbourhood W (in the topology of the weak convergence) of v/Z"
and any ¢ > 0, there exists ke N such that

1 k—n

VIE({(Eos -+ & g) XX P Eo Ozpmtism-JEWD>1—¢.

Let v = y5. Then, this implies that

1 Jtk-n
gs({jeN; k'—n + 1 ‘5 5(4(() ..... a(H.,._x))EW})>1—8.
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Collecting such sections {j,---,j + k — 1} of integers that satisfy

1 jtk—n
7 " fa cW

for sufficiently large n’s and sufficiently small W’s, we can construct a subset
D={dy<d, <--} of N such that o¢(D) =1 and p,, =v, where a,(i) = a(d)).
Combining this fact with Lemma 1, we can prove Theorem 1.

PrOOF. Put v = 5. We take a countable base F = {f,,f,, -} of C(Z") such that
@.5) 111 G=12-), and
(2.6) fieCE) (j=1,2,-).

Since v is ergodic with respect to T, we have

a-1
.7 lim v ({y; sup L X f Ty —| fdv I <1-})=1
n-w 1gjsk 1B y=0 k
for any k = 1,2, --.. Therefore, we can take r, <r, < --- such that
2.8) r>k* (k=1,2,-), and
1St 1 1
(2.9) v[{y; sup |— Z f(T'y)—|fdv| <—})>1- ~ (k=12,-).
t1sjsk 1Tk 1=0 k k
Put
1t 1
(2.10) Lo={pswp |— = f(T') - f,dvl <7l
1575k Tk j=0
Since
a—1
v=w~—lim — X dr,
nes M =0

n—+o

and I', is an open set, it follows from (2.9) that

@11 os({is Twe L) 29D > 1 — .

Fork=1,2,--- and m = 1,2, -.-, define @, inductively by
K g
@.12) a; = min{i; T'¢el,}, and
a ., =min{i;izak+r +k Tael,}.
Put

0
213) E = U {@,d+1, b +r+k-1} (k=12

m=1
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It is clear that if i ¢ E,, then T'a ¢ I',. Hence, from (2.11),

(2.19) os(E) 2 os({i; Te[) > 1 - —Ii-
Therefore, there exist 0 = h; < h, < -+ such that

2.15) h 2 khy—y,

(2.16) | Ei -y n{hk—l,hk-1+1a“',hk“1}|—>.:kz"'k,
2.17) h,eSfork=2,3,:, and

(2.18) %lN,nE,ng — %foranyneSwithnghk.
Put

2.19) E= U (B O{hhe+ 1,0 hpy — 1),

k

For ne N, let #(n) denote k such that h, <n < h,,. Let neS and k =t(n) = 2.
Then,

(2.20) |EAN,]

1

2 |Eoy N{lyogy s = 1| +[E 0 {Byy-oin = 1}
2 |E-y NNy | = oy +|ExNN,| ~ iy
> (1 —E-g—l)h,,-h,,_1 + (1 —%)n-— h, (from (2.17) and-(2.18))

= n—-—k——-hk_l

v

n-— éki (from (2.15)).

Hence, o5(E) = 1. Define E’ and E” by

E' = {neE;n=a™ for some m}, and

(.21)
E' = {neE';n+ Tem + 8(0) £ Ryny+1}-

Put

(2.22) D= U {mn+1,,n+ry+tn -1

ne E”
Then, it is clear that

(2.23) o({i;ieD,i+1eD} =0
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since lim,_, . #(n) = oo. It is also clear from (2.13), (2.19), (2.21) and (2.22) that
D cE and

(2249) END c{neE;n—r,u—tn) <hy, or n+r+ (n) > by e}
Let ne N and k = t(n) 2 2. Then,

k

Z 2r+1i)
DNN, o=
4kr
=1- k from (2.8
- | Ec-1 O {hy_qy -, = 1}] (from (2.8))
21— % (from (2.16)).
Therefore,
N
(2.25) lim |D N"l 1
n— o IEnan

This implies that og(D)=1 since o5(E)=1. Let D={dy<d, <-} and
E"={e;<e <} Form=0,1,-, putc,=|DNN,_| Then, it follows from
(2.22) that if 0 £ j < ry(y, + t(m), then

(2.26) Cmt1=Cp+ Tye,y +Hey) and d,_,;=e, +].

Define a, e Z¥ by «,(i) = a(d,) (i € N). Then, it is clear from (2.26) that

@27 ten + 1) = @,(cp +J) i 0.5 < e,y + Hen).

For j = 1, assume that t(e,) = j. Let k = t(e,,). Then,

Cmt1—1 emtri—1

S (T~ X fj(T‘a)l

1= Com i=e.,

Cutt—1

z fj(Tial)

I=cm+re

k (from (2.5) and (2.26)).

(2.28) = (from (2.6) and (2.27))

A

On the other hand, since T “"x € T, from (2.12) and (2.21), it holds from (2.10) that

emtre—1 rk
? f(T') —r, J‘f,dvl<?.
Combining (2.28) and (2.29), we have

(2.30) c’""il fj(Tial) ~(Cms1— cm)ffjd" l <2k + rT:-

i=Cm

(2.29)
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Here, we also used (2.5) and (2.26). Thus,

1 emt it ; 2k 1 _3
— X - . < — — =
@3 | I AT [ras| s3E+ 554
from (2.26), (2.30) and (2.8). Since
1 cn—1 n—-1 cm - ¢y, 1 Cm+1—1 .
LY Ty = & w1 "%m, Y f(T'y),

Cn =0 m=1 Cn Cn+1 — Cm  i=c.,
(2.31) leads us to the conclusion that
Lot
(2.32) lim — '—Zo fi(Tay) = ffjdv.

Note that j is arbitrary in (2.32). Moreover since

i 1= % o T et X o (206))
- Cm mow |DON,_|
< Tim fio + %)
now | DON,|
= Tm T eom 225)
nvw |ENN,|
—_ 2r
< lim tm)
n=w IEt(n)—l N {hr(n)-la "'9ht(n)_ 1}'
— 2
< -
< :Ln; ) (from (2.16))
= 0’

it follows from (2.32) that
n—1
lim % z fj(T‘aI) = ffjdv (=12,
n-w i=0
Thus, o, is a stochastic sequence such that p,, = v. Let o, €Z¥ be any stochastic
sequence such that p,, = v (for example a, = «,). Applying Lemma 1.1 for D, «,

and «, (note (2.23)), we obtain a stochastic sequence feZ¥ such that a(i) = B(i)
if ieD. This completes the proof since a4(D) = 1.

THEOREM 2. Let v be a T-invariant measure on £} x 3. Assume that feZ}
and S € 2, satisfy that uﬁ =v/Z). Then, there exists a€X) such that S€ E
and u(sa,ﬂ) = v. Moreover, if v/E} is ergodic with respect to T, then the above «
can be taken as a stochastic sequence.
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Applying this theorem to a trivial case that f = (x,x,-), S =Nand v = ux J,
we have the following result which is known as Kakutani’s theorem [10].

COROLLARY (S. Kakutani). For any T-invariant measure p on IV, there
exists a stochastic sequence o € XN such that u,= .

PROOF OF THEOREM 2. Let v be a T-invariant measure on ¥ x . Let feX}
and S € Z; satisfy that uf =V /Z'zv . The latter statement of the theorem follows from
the former half of the theorem and Theorem 1. In fact, if v/ZV is ergodic with
respect to T and if we can take a€X} such that Se Ep and y(sa_ﬂ, =v, then
from Theorem 1, we can take a stochastic sequence o' such that os({i; a'(§)
= a(i)}) = 1. Then, it is clear that ' also satisfies that S € Z,.5) and gy 5 = .
Therefore, it is sufficient to prove the first half of the theorem.

Take a countable base {f,,f;,-+} of C(Z} x Z}) such that

(2'34) fj (S C(Z{ X 24) (J = 1’ 2’ )_

Take a sequence of real numbers 1 > g; > g, > -+ which tends to 0. For each
h=1,2,--, we can prove that there exists o, X} such that

- n—1 . X
(2.35) sup Thm |~ X f(T'a, T'B) - J fjdvl <3, /2.
15jsh nes PN =0

We will defer the proof of this fact for a while.
Next, for each b =1,2,.--, select t, > 0 such that

— n—1 X .
(2.36) sup  sup L X f(Tw, T'B) — ffjdvl < g,
15j%5h n;‘s n ;=0
Bty

Let k, satisfy that k; =0,
(2.37) k,eS (h=2,3,-), and

ky—y + 2h

(2.38) k, 2 max {t,,,
n

=23,
Define x e XY as follows:
(2.39) a(i) = o, (i) for every ie{ky, -, kys1—1} (A=1,2,--).

For this @, we prove that Se Z,; and 4, 4 = v. To prove this it is sufficient to
prove that
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n—1

1

(2.40) lim —; Z (T, T'B) = J.fjdv (=12-).
neS

Let j =1 and &> 0 be arbitrary. Select m such that m=>j and ¢, <¢/7.

Consider an arbitrary n satisfying that ne S and n 2k, ;. Select h such that

kyo1 Sn<kyp, Clearly, jSm<h Put I;={ieN;k,,; Sis<n—j} and

Io={ieN;k,<i5kyy —j}. Then, it is clear from (2.34) and (2.39) that
J(Tla, T'B) = f(T'e4,, T'P) if i€, and

f(Tla, T'B) = f (T, T'P) if icl,.

Therefore, from (2.33), (2.38) and (2.41), it holds that

(2.41)

n—1
24 I f(T'Th= I f(T%,TH + X f(T'4 T +Cy,
i=0

ie Iy ieIo
where [C| £k, + 2i Sk, +2(h + 1) S kyy, * 841 S ng,. In addition, from
(2.33), (2.36), (2.37) and (2.38), we have
p) fj(Tiah-!-l’Tiﬂ)

iEI(
kn+1—1

n—1
(2.43) = iz‘a fj(Tio‘Hb Tiﬁ) - '§o fj(Tiah-i-l: T!ﬁ)_ C,

=n (ff,dv+C3)—k,,+l-(J.fjdv+C4)——C2,

where |C,|SjShSk, & Sne, |Cyl ey Se, and |Cy| S 841 S g AlsO

(2‘44) 2 fj(T Oy, 'ﬁ)

ie I()
kyp=1

kr+1—1
= _?0 fj(Tia,,, Tlﬂ) — ‘go fj(Tiot,,, Tiﬂ) il C5
= Kyyq- (ffjdv + Cs) —Cy=Cs,

where |Cs| < j S ne, |Cs| <S¢, and |C;| S ky £ kyyy * 8441 S 18, Combining
(2.42), (2.43) and (2.44), we have

n—1
li X f(T', Tp) — f fAv|£7g, L,
which completes the proof of (2.40).
Now, it remains to prove (2.35). We have to show that
~ foranye>0,qeN and a finite subset F of C(Z? x 29), there exists xe L} such
that
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R n—1 .
(2.45) sup Tm |~ 3 f(T'a, T') - f fdv I <s.
feF nes 10 ;=9

The idea of the proof. We define a random mechanism by which a desired
sequence is obtained with probability 1. Let L and R be sufficiently large integers.
Let M = LR. Select an integer from {0,1,---, L— 1} with the equal probability
1/L. Let it be t,. For k=0,1,---,R — 2, select a(t, + kL), a(ty + KL+ 1),---
oty + kL + L — 1) according to the probability

v{ | B(to + kL), -+, B(to + kKL + L — 1)}.

Select an integer ¢, again from {0,1,--,L— 1} with the equal probability 1/L.
For k=0,1,.--,R—2, select a«(M +t; + kL),---,a(M +t;, + kL+ L—1) ac-
cording to the probability v{.|B(M + ¢, + kL), -, B(M +t; + kL+ L—1)}.
Here, each of these random choices should be done independently of the others,
Succeeding this procedure, we can define a(i) for most i’s. Define «(i) arbitrary
if it is not defined by this procedure.

H

PROOF OF (2.45).
Let ¢ >0 and g € N be arbitrary, Without loss of generality, assume that

(2.46) sup |f] = 1.
feF

Denote by X; and Y, (i € N) the projections from £} x £} to £, and =, defined by
X{y,0) =y(i) and Y(y,6) = 5(i), respectively, where yeZX; and deZ). We
consider X; and Y, (i€ N) random variables on the measure space (X} x X5, v).

Take a finite partition Q = {q;} of £, (Q is also identified with the partition
Yy 'Q of ) such that

@47 i(U ¢)-o
J
where q'} is the boundary of ¢, and that

(243 P |f@,0) = f(3,8")|; feF, yeZ{, 5 and & belong to the same

-1

q y
element of V/ T"'Q} <e/3,
i=0

where the symbol ‘“\/’” means the least common refinement of partitions. For

x€Z,, we denote by x* the element of Q which contains x. In this sense,
Y* (i€ N) is a Q-valued random variable. For fe F, define
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q—1

(2.49) fu=E f|A x V T"Q},
i=0

where A denotes the point-wise partition of ) and E,{|} is the conditional
expectation under the measure v. Then, it is clear from (2.48) that

sup,  , [f@,8) — fu(3,8)| S¢/3, and

(y.8)e ¥ x L)

ff*dv = ffdv.

Select an integer L such that L > g and 2(q—1)/L < ¢/3. Select an integer R
such that R = 18 /e. Put M = RL, Take a sequence of Z;-valued random variables
Z,,Z,, -+ which are defined on some probability space such that

(2.50)

(2.51) Zy,Z,, - are independent,
where Z, = (Z;ps Zisg+ 15 s Zig+ m-1) (i =0,1,--), and that
P{Zye Ao s Zimsm-1€ Ay}

1 L-1 t—1 M-1
=L (n A4y - T1 A x
L t=0 \k=0 k=M-L+t

(2.52)

R-2
X aHo P{Xo€ iy X1 eA:+kL+L—1|
Yo =B(iM +t + kL)*,---, V,*, = B(iM +t + kL+ L— 1)*})‘

where 1 is any fixed measure on Z, and P,{ | } is the conditional probability about
random variables. If i e N satisfies that

i

(2.53) L-1<i— [M

]MgM—L—q,

where [x] denotes the largest integer not greater than x, then it follows from (2.52)
that for any measurable set 4 of £

1k 1 5 qg—1
(2.54) i ‘:‘% m, (A) S P{(Z; " Zi1q-1)EA} éf Eo m;,(4) + s
where
(2.55) m,(4) =P{(X,, s Xy 4q-1)€A| Y5 = Bl—0)% -, Y[ =B(i—t+ L—1)*}.

Hence, from (2.46), it holds that, for any fe F and ie N satisfying (2.53),
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IE{f*(Zb ot |+q 1» ﬁ(l)* ’B(’ + q— 1)*)} -

2.56) -
= I B ] e ke Y B+ g — 1) x

x my(dxq--dx,_ ;)| £&/3.

On the other hand, we have
[ o3 B B+ = D )

= J'Jfau(xo,"',xq-n}'ot"',}’:—l) X

X m,-,,(dxo--'dxq_l)é(,,m. ----- ﬁ(i+q—l)')(dy: "‘d}’:—l)

2.57)
= E {f*(xt’ ) r+q 1s Y: : Yttq—l)l
Y=~ 0%+, Y2y = B — t+ L— )%}
= E{fso T'I Yo, Y J(T' U B).
Since
o(:ieN;L—l§i - [ ]\/ISM L- q}) M-2L-q+2,, =
M 6
it follows from (2.56) and (2.57) that
1" .
T | T B Zinge O B+ = 1)
(258) 1 L—a 1 n—1 . . 2%
-—— ¥ = yx ... it el
L_q + 1 t=0 n ‘E‘ Ev{f*OT IYOs sYL—l}(T ﬁ)l é 3 .

Since the function E,{f, o T*| Yg', -+, Y/} is continuous at any point except for
the points belonging to the set ;25! U,T7¢%, and this set has measure 0 under
uﬁ from (2.47), it holds that

n+t—1

lim % Z E{feoT'|Ys, -, Y J(T'B)
neS

(2.59)
= J‘ E{feo T'| Y&, -, Y Jduy =ff* oT'dv= ff,,dv = ffdv.

Hence, from (2.58), we have
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llm ;‘ E E{f*(zv ) ;+q— 1 ﬂ(l)* ’ﬂ(l + q— 1)*)}_.

neS
n—+w

(2.60) _ ffdv; <z

ForieN and feF, put U = f(T'Z, T'B), where Z = (Z,,Z,, ---). Then, it follows
from (2.50) that

(2.61) IE{U{}— E{fe(Z;, s Z; 4 q-1, BG)*, -+, B(i + q — 1)*)}| é

w| e

Combining (2.60) and (2.61), we have

n—1
(2.62) fm |+ T EUf - f fdv ] <e.
njoso n =0

Put U/ = (U, U+ Ulye m—1) (i = 0,1, --). Then, it follows from (2.51)
that UJ,U{,-- are independent, and U{,U{,--- are independent. Hence the
strong law of large number holds for U} Ul, el

n—=wo n i=0

Since F is a finite set, this implies that
1 n—-1 . 1 n=1
P, {Iim - T f(TZ,T'B) - - z

n— i=0 i=0

E{U{}] =0 for any feF} =1.
In particular, there exists a€X] such that
n—1
fim 1—— 2 ST T ~— T E{Uf} =0
n-*w i=0

for any fe F. Combining this with (2.62), we have

n—-1
71;:0 F(T'a, T'g) — f fdv] <e,

sup lim
feF neS
n—-w

which completes the proof of (2.45).

3. Two lemmas concerning disjointness

By an endomorphism, we mean a measure-preserving transformation on an
abstract Lebesgue space. Let U be an endomorphism on (Q, u). By h,(U), we mean
the entropy of U (see [2]). In this section, we shall discuss those results, which
will be used in the next section, concerning the notion of disjointness between
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endomorphisms due to Furstenberg [3]. It should be remarked that Lemma 3.1
is proved following the idea used by Furstenberg in the proof of Theorem 1.1 in
[3]. However, his proof contains a gap, which is filled by virtue of our Lemma 3.1.
For this reason, we write the proof of Lemma 3.1 in detail. Lemma 3.2 is a
special case of the so-called Pinsker’s theorem which asserts that two endomor-
phisms, one of which has a completely positive entropy and the other of which
has entropy 0, are disjoint (see [3], [12] or [13]).

LemMA 3.1. Let P be a non-degenerate measure on a compact metric space X.
Let u be a T-invariant measure on {0,1}" such that h(T)>0. Then, there exists
a T-invariant measure v on ¥ x {0, 1}" such that

@) v/=Y = PY,

(ii) v/{0,1}¥ =y, and

(iii) X, and Y, are not stochastically independent under v, where X, and Y,
are projections from EN x {0,1}Y to T and {0,1}, respectively, defined by
Xo(a, B) = 2(0) and Y(a,B) = p(0) (xeZ¥, Be{0,1}"). Moreover, if P is the
Lebesgue measure on £ =[0,1], then we may choose the measure v so that a
version of E,{Yy| X, = t} is a non-decreasing function of t which is non-constant,
precisely E{Yy| Xo=0+}<E[{Y;|Xo=1-}.

ProoF. Let us first consider the special case when £ =[0,1] and P=21 (the
Lebesgue measure). Let u be a T-invariant measure on {0, 1}" such that ,(T)>0.
Denote by M the set of all negative integers. Let u’ be the measure on {0,1}"
such that

p({Be{0,1}M; i) =¢ for i=—n,—n+1,-,~1})
= u({Be{0,}";p(n+i)=¢ for i=—n,~n+1,-,—~1})

foranyn=1and ¢_,,& 44, &1 €{0,1}. For each i € N, define a projection U,
from [0,1]" x {0,1} to [0,1] by U, B) = «(i). Also, for each ie M, define a
projection ¥ from [0, 11" x {0,1}* to {0,1} by V(«, B) = f(i). Put

G2) r=ax i,
Define a mapping f: {0,1}* —[0,1] by

(3.3) B =EAV_y [V, =f(=1), V3= (- 2),~}



Yol. 16, 1973 SUBSEQUENCES OF NORMAL SEQUENCES 137

Since h,(T) > 0, we have

(3.4) W0 <f< 1} (= w({B;0<S(B) < 1)) > 0.
Define a mapping V,: [0, 1]¥ x {0, 1}* —{0,1} by

1 if «0) = f(B

0 else.

Since f and U, are stochastically independent under t because of (3.2), it holds
for any te[0,1] that
E{Vo|Uo=1} = P{f21t{Us=1}
(3.6) = P{f21}
= uw{fz1}, ae.

Thus, from (3.4) and (3.6), E,{ Vol U, = t} is a non-decreasing function of ¢ such
that E{Vo|Uo=0+} <E{Vo|Uy=1~}.

Define a mapping ¢,: [0, 11" x {0, 1} - [0,1]" by ($4(, B)(D) =i + 1),
where ae[0,1]%, pe{0,1}* and ieN. Also, define a mapping ¢,:[0,1]"
x {0,1}¥ - {0,1}™ by

Voo, )  if i=—1

(62(, P () = {ﬁ(i +1)  if ig-2

We prove that ¢=(¢,, ¢,) is a measure-preserving transformation on the measure
space ([0, 11" x {0,1}™,7). It is clear that ¢, and ¢, are independent under <,
Also, it is clear that A¥o ¢, '= A", Therefore, it is sufficient to prove that
p'o¢; ' = u'. That is to say, the distribution of (---, ¥_,, V_,) coincides with the
distribution of (-, V_; 0 ¢,,V_;0 ¢,), where V; and V, 0 ¢, (i € M) are considered
as random variables on the measure space ([0,1]" x {0,1}¥,7). Note that
Viogd, =V, for i<~ 1. Therefore, (-, V_, 065, V_j0¢,)=(",V_y, V).
Since y is T-invariant, the distribution of (---, V_,, V. ,) equals the distribution of
(--,V_3,V-,). On the other hand,

P{Vo=1|V_ =B(—1),V_, = (- 2),}

P{f(B)Z Uo| Voy=B(=1),V_p=B(—2),}

P{tZ Uolli=piy (Uon(+,V-2,V-y)

= f(®)

P{V_ =1 ] Ve =B(—1,V_3=5(-2),} (from (3.3))

I

i

I
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for almost all (w.r.t. ) Be{0, 1}“ . Thus, the distribution of (---,V_,,V_,)
equals the distribution of (---,V_,0 ¢,, V. 0 ¢;), and hence, ¢ preserves .

Define a mapping ¥,:[0,1]" x {0,1}¥ - [0,1]" by ¥ (a, ) = a. Define a
mapping ¥, [0,1]" x {0,1}" {0, 1}" by (¥2(% B) () = Vo(¢'(®B), (ieN).
Let ¢ = (Y, ¥2). Then, it is clear that Yy o¢=Toy, where T is the shift on
[0,1]" x {0, 1}". Define a measure v on [0,1]" x {0,1}¥ by v =70 ¢!, Then, v
is T-invariant, since vo T ' =710y 'oT '=10¢ loy ' =10y " t=v Itis
clear that v/[0,1]" = A". For each ieN, let Y;: [0,1]" x {0,1}" — {0, 1} be the
projection such that Y(a, ) = B(i), Then, it is clear that for each ne N, the dis-
tribution of (Y, Yy, -, ¥,—) under v equals the distribution of (Vy, Vyo¢,---,
V,0¢"~ ') under 7. On the other hand, since V_;0 ¢'=V, for any ie N and 7 is
¢-invariant, the latter coincides with the distribution of (V_,, V_,., -, V_{) under
7. Hence, v/{0,1}" = u. Let X,: [0,1]" x {0, 1} - [0,1] be the projection such
that X (o, B) == o(0). Since the distribution of (X, Y,) under v equals the distribu-
tion of (U, Vo) under 1, E{Yy|X,=1}=E{Vo| Up=1} for any te[0,1].
Thus, E,{Y, | X, = ¢} is a non-decreasing function of ¢ such that E,{Y, | X, = 0 + }
< E,{Y,|X,=1-1}. Note that this implies that

E{Y, |0 X,<s} = % fsEv{Yo]X(,:t}dt
(3.7 °

1
< EV{Y0|X0=t}dt=Ev{Y0]s<X0§1}

1—5

for any 0<s< 1.

Consider next the general case when X is a compact metric space and P is a non-
degenerate measure on X. Since P is non-degenerate, there exists a measurable set S
of T such that 0 < P(S) < 1. There exists a measure-preserving mapping g from
([0,1], 2) to (Z,P) such that g™'(S) = [0, P(S)]. Define

g:[0,1]" x {0,1}" -> =¥ x {0,1}¥
by g(e, B) = (, B), where y(i) = g(«(i)) for any ie N. We prove that the measure
vog~! on IV x {0,1}" satisfies the conditions of our lemma. Clearly,vog~"is
T.invariant. It is also clear that vog ~!'/Z¥=P"and vog ~'/{0,1}" = u. Let
X} and Y; be projections from =¥ x {0, 1}" to Zand {0, 1}, respectively, defined by
X'o(e, B) = (0) and Yg(«, B) = B(0). Then, from (3.7),

E,;-{Y5| XoeS} = E,{¥,|0 = X, £ P(S)}
< E{Y,|P(S)< Xo 1} =E, - {¥5| Xo€ 5.
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Thus, X}, and Y are not stochastically independent under v o g ~*, which com-
pletes the proof of Lemma 3.1.

The following is put here for later reference.

Lemma 3.2 (see [3], [12] or [13]). Let P be a measure on a compact metric
space I. Let u be a T-invariant measure on {0,1}" such that h(T) = 0. Then,
for any T-invariant measure v on I x {0,1}" such that v[E¥ =P¥ and
v/{0,1}¥ = p, it holds that v = P" x p.

4. Subsequences of P-normal sequences

Let P be a non-degenerate measure on a compact metric space X. Let t be a
selection function. We here restate the four conditions introduced in §1.

CoNDITION 1. Any o€ Nory is a 1-collective.
ConDITION 2. Norp 07 < Norp.
ConbpITION 3. Norp o1 = Norp.
ConDITION 4. 0, is completely deterministic.

Let X, be the projection Z¥ — T such that X () = «(0) (xeZ¥). Let acZ¥ be a
stochastic sequence. Then, it holds that
1 n=1
.0 w— lim — Sy =He0 X5 .
e N oi=0
It then follows that Condition 2 implies Condition 1.
THEOREM 3. Condition 1 implies Condition 4.
PrOOF. Assume that 0, is not completely deterministic. Then, there exists
S e E,, such that h,,g (T)>0. Let pu= HeS- From Lemma 3.1, there exists a T-

T
invariant measure v on ¥ x {0, 1}" such that

(4.2 v/z¥ = P,
4.3) v/{0,1}¥ = p, and
4.4 X, and Y, are not stochastically independent under v,

where X, and Y, are the projections from Z¥ x {0, 1}" to £ and {0, 1}, respectively,
defined by X7, 8) = y(0) and Y(y, B) = B(0). Note that v/=Z¥ = P¥ is ergodic
with respect to T. Applying Theorem 2 for these v, 0, and S, we can select a stochas-
tic sequence aeZ" such that S e Z,,4,) and ;I:,.,,) = v. Note that « € Nor, since
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Ho =3 = s /2N = PV,

We prove that « is not a t-collective. If
n—1

w— llm _ Zo 6‘!('“))
i=

n—=w® n

does not exist, then « is not a t-collective, Therefore, assume that this weak limit
exists. It is then sufficient to prove that there exists fe C(Z) such that

n—1 n—1
4.5 lim 1 X f(a(i)) # lim 1 X faz()).
e M g=0 s M oi=0
From (4.4), there exists fe C(Z) such that
E{f(Xo)Yo}
RO R

In this, note that E,{Y,} # 0. In fact, it follows from h,(T) > 0 that u{Y, = 0} 5 1.
On the other hand, we have

(4.6)

1 n—1

n—=w t=0
n—1
lim —n‘- T £,
E{f(XQYo} _msa — '™°
Eu{YO} 1 n—1
lim — X 0.)
(4.8) s M=o
-~ lim T faG)),
an 'n l i=0

where t, = max {i; ©(i) £ n — 1} (n = 1,2, ---). Thus, (4.5) is proved by (4.6), (4.7)
and (4.8). We complete the proof of Theorem 3.
Next, we prove that

(4.9) Condition 4 implies Condition 3 under the hypothesis lim % < 0,

n-w

The conclusion of (4.9) (even the converse of Theorem 3) is not true in general
unless the hypothesis l—ia,,_.wt(n) /n < oo. For example, consider a selection
function 7 such that lim,_ , t©(n)/n = oo is satisfied. Then, 6, is completely deter-
ministic, since y, = J,, where 0(i)=0 for any ie N. On the other hand, it is
easily seen that Nor, o 1= X¥; given x€ £, a P-normal sequence a such that
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(x 0 1) (i) =x for any ie N is not a 7-collective. The proof of (4.9) follows after
several lemmas. We first prove
Lemma 4.1 ([14]). Assume that
(4.10) lim ) < 0.
n—-w
Then, Condition 4 implies Condition 2.

PRrOOF. Let us assume (4.10) and Condition 4. Let a € Nor, be arbitrary. It is
sufficient to prove that

1 n—~1
(4.11) lim — ¥ f(TYao 'c))=f fapy
LN

n-w

for any ge N and fe C(Z7). Let ge N and fe C(Z9 be arbitrary. Let
A= {ﬁe{O,l}”; X B q}.
i=0
Then, A is an open set. Define a mapping /: Z¥ x A - Z? by

]
“.12) (ll/(r,ﬂ))(i)=v(min {j; S pky=i+ 1}) (i=0,1,,q — 1),
k=0

Then, ¥ is a continuous mapping. Define a real-valued function g on " x {0, 1}"
by

fW@®,B)) if peA and B(0)=1
(4.13) 9. p) = {

0 else.
Clearly, g is continuous on a subset Z" x (A U {0}), where 0(i) = O for any i€ N.
Since T™%Z" x (A U{0})) (n =0,1,---) is an increasing family of subsets such
that the union equals the whole space T" x {0,1}", it holds that
4.14) VEYx(AU{)) =1

for any T-invariant measure v on ¥ x {0, 1}". To prove (4.11), it is sufficient to
prove

n~-1
Y g(T'a, T'0)
(4.15) lim &% = ffdP”.

-0 n—~1
Z 0)
i=0

For any infinite subset S’ of N, there exists a subset S of S’ such that S€ Z,4.),
since the space of measures is compact in the topology of weak convergence. Let
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V=i, and u =y . Since 0, is completely deterministic, h,(T) = 0. Note that
v/Z¥ = P and v/{0,1}" = p. Therefore, v = P¥ x u from Lemma 3.2. Since g is
continuous at almost all points of Z¥ x {0, 1}" with respect to v, it holds that

1 n—1 )
n—1 : . i i
S oT'sT0) s w im0 Y
(416) lim = Lt = 5%
neS n—1 1 n—1 ﬂ(r)
S X0 lim — ¥ 6
i=0 nes N =0

where I' = {8; B(0) = 1}. In this, note that u(I') > 0 since (4.10). For feI' NA,
it holds that

f 96, HPNdy) = f S0, ¥ty 7(t,-))P(dy)
4.17)

= [ sarn

where t;=min{j; X oB(k)=i+1} (i=0,1,-). If B¢T NA, then clearly
[g(3,8) PY(dy)=0. Therefore, from (4.17) and the fact that v = P" x g,

[oar = [ (] a0.prpan)ucap
[0 (J 72" Jan

u(T N A) f fdP™.

(4.18)

Since p(A U {0}) =1 and 0¢T, we have

4.19) wT NA) =uh).

It follows from (4.18) and (4.19) that (4.16) equals [fdP". Since for any infinite
subset S’ of N, there exists an infinite subset S of S’ as this, we complete the proof

of (4.15). Thus, Lemma 4.1 is proved.

Let I' = {Be{0,1}¥; B(0) = 1}. Then, I is a closed set. For €T, let
in{i;iz1, p)=1}  if p)=1 fa iz1
(4.20) 1) = {mm{z ! Bl =1} if B(i) or some i

(0o} else.

Define a mapping Tr: ' - I" by
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{T‘mﬂ if t(f)<w
T =

(4.21)
B else.

Let W= {1,2,---} U { 0 } be the one-point compactification of the discrete space
{1,2,--}. For BeT, define y(B)c W¥ by

(4.22) Y(B) () =«Tp)  (ieN).

Then, y: T — WV is a one-to-one mapping. Let u be a T-invariant measure on
{0,1}" such that u(T) > 0. Dzfine a measure p- on I' by setting

uS)

wT)

for any meausrable set S = T'. Let A={Be{0,1}"; X2, B(i) = oo}. It is clear that
Ty and y are continuous on I' N A, Since u(I' "A) = w(T") for any T-invariant
measure g on {0,1}" (cf. (4.14)), Ty and ¢ are continuous at almost all points
with respect to up. Moreover, Y(T(B)) = T(Y(B)) for any eI, where in this
equality, T represents the shift on WY, This fact, combined with the fact that y is
one-to-one, shows that

(4.23) 1e(S) =

hur(Tr) = h“l'o w-](T).
On the other hand, it is known [1] that

1
hag(TD) = (D)
Therefore, we have
1
(4.29) h,,r oy-1(T) = F(ﬁh“(T)'

LEMMA 4.2. For BeT, assume thatlim,_, 1/n X725 B(i) > 0. Let S€ E; and
p=p;. Let ' = {X,55'(i); ne S}. Then, we have S’ € By and gy = pr o YL
Moreover, if B is completely deterministic, then Y(fB) is completely deterministic
(note that w(I") > 0).

PrOOF. Let fe C(WY). Define a function g on {0, 1}" by
fW@) if yel
g(y) =

(4.25)
0 else.

Then, g is continuous on A U {0}; at almost all points of {0, 1}¥ with respect to .
For neN, let u, = Z!2} B(i). Then,
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JGowdu = o [ oau

()
_ 1 -
= D hins ? 9(T'p)
(4.26) =L fim —l—unz-lf(tl/(T‘ﬁ))
wr) nes n =0 r
| 1
= lim - T f(Tif)
nzS’
1 n—1
= lim — X fTW(R).
neS’ i=0

Thus, we have §’'e =, and ;t:('ﬂ,= pr o Y~ Assume that B is completely
deterministic. For any S'e 2, there exists a subset S of the set

n—-1
{n; py ﬁ(i)eS’}
i=0
such that Se Z;. Since {X,;25'8(i); ne S} = S, it follows frcm (4.24) and the fact

that h"5 (T) =0 that h,,;;m(T) = 0. Thus, ¥(f) is completely d=terministic.
For é = (EO’ él, Tty éq-l) € {0, 1}49 dznote

. 1 ifyi)=¢ for i=0,1,,q — 1
@.27) %) = { '

0 else.

LEMMA 4.3. Let a€Norp. Assume that Be{0,1}" is completely deterministic,
and lim,,, 1/n X728 B(i)> 0. Then, for any infinite subset S’ of N, there
exists a subset S of S' such that

(4.28) lim % Z f(T"0)y(T'B) = f fap" - f Xedits

nesS
n-w

for any fe C(Z") and Ee D, where u, = X' B(j) and
(429 D = G {(€o,+ 8- €{0,1}%: ;=1 for some i =0,1,--,g — 1}.
g=1

PrOOF. For ye{0,1}%, define Y(y)e WY and Ti(y)el by ¥(y) = ¥(y") and
Tr(y) = Te(y"), respectively, where
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o) if i1
Y () = { o
1 if i=0.
There exists a subset S” of {u;; i€ S’} such that S" € Z (113, for any ke N. Also
there exists a subset S of {i;u;€S"} such that lim,.s,..,u,/n =b exists and
b> 0. Clearly, S = §". Let & = (&, -+, £,—,) €{0,1}%. First, assume that &, = 1.
Then, for any fe C(Z") and ke N, we have

f(T*)(xzo THT'P)

o1 g
lim —
B =0

neS
n—+w
. 1 "¢
= lim —
nes It
n—w

f(T"0) x(T(T*B))

1
=0

-

= lim
neS
n- o

ST 4 (THT*B))

=lv—n
M=

1=0

I

n—1
b lim —,1,— > f(Th) x (FAT*)
nisa;' i=0

n-1
blim T T 0 ) TUT'E)

b J-f (g © Y1) ditgepcrngy

I

=b J‘f-(;Q o Y~ d(P" x pjpug)  (from Lemma 3.2 and 4.2)

b ffdPN' f(xc o] ll/_l) d}lgl("rkﬁ)

b J.fdP"- fx¢ d(uFes)r (from Lemma 4.2)

= ffdPN- J. Xz du;.

Next, let {g=--=¢&,_; =0and £ =1 for some 1 <5 < g — 1. Then, we have
s—1
— s — nen XX} S_k_l
X{ _‘X({s ----- $q-1) oT Z= (1:9’_ ,O,'é > 9€q—l)o T

k
Thus, (4.28) follows from the first case,
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PrOOF OF (4.9). Let us assume (4.10) and Condition 4. It is sufficient to prove
that Nor, o 7 o Nory, since Lemma 4.1. Let

(4.30) {do < d; <} = {z(i); ie N}~
Let X = (X,, Xy, -+) be an independent sequence of Z-valued random variables

such that the distribution of X; on X is P for each i € N. Let a € Nor, be arbitrary.
Let

(4.31) Y() = {a(]) if i=1(j) (ieN).
X, ifi=d;
Then, clearly Yo t = a. Let F be a countable base of C(Z¥) such that F c
®_oC(Z9). Let fe C(ZY). For &=(&, -+, £, 1) € {0, 1}4, define f, € C(Z") by

g=0

i-1
@3 = [ 1a05 < x 25 (= T Gi=0Lg-1),

where A0 = P and A} =4, for any ae Z. Then, it is clear that [ f,dP¥= [ fdP"
for any £€{0,1}%. It is also clear that

(4.33) E{f(T'Y)} = . [02“. ST )y (T'6)),

where u; = Xi240.(j). Note that if £ =(0,0,--,0), then f,is a constant function
equal to [ fdP¥. Therefore, it follows from Lemma 4.3 that for any infinite subset
S’ of N, there exists a subset S of S’ such that

n—-1
lim -;— T E{f(T'M)}= X fdp¥. f Xedus, = f fdp".

i=0

neS ¢e[0.1]9
n-w©

This fact implies that
4.34) 11::; % é:: E{f(T'Y)} = | fdP".
Note that the strong law of large number holds for the sequence of random
variables (f(T'Y); i =0,1,---). Therefore, (4.34) implies that
lim - :2: F(T'Y) = j FdpV
holds with probability 1. Since F is a countable set, we can take y e Z¥ such that

yot=a and

-1
lim - T f(T'y) = f fdp¥
n~o N j=o0
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for any fe F. Since F is a base of C(ZV), it holds that y € Nor,. Thus, « € Nor,o t
which completes the proof of (4.9).

In conclusion, we have proved the following result.

THEOREM 4. Under the hypothesis lim, ., , ©(n) /n < o, Conditions 1,2,3 and
4 are equivalent to each other.

REMARK. It can be proved that if aeZ" is a stochastic sequence such that the
endomorphism T on (Z", u,) has a completely positive entropy, or equivalently, the
natural extension of it is a Kolmogorov automorphism, then « is a t-collective
for any t such that lim ., , ©(n)/n < o and 8, is completely deterministic.

5. Completely deterministic 0-1 sequences

The notion of completely deterministic sequence is obviously extended to a more
general case if the base space {0, 1} is replaced by a compact metric space X That is,
aeZV is said to be completely deterministic if h(T) = 0 for any pe {i; S e E.}.

ExamPLE 1. The following types of sequences are known to be completely
deterministic:

1. Toeplitz type sequences [5]

2. generalized Morse sequences [8]

3. sequences associated with substitutions, [4] or [7]

4. sequences generated by finite automata in the sense of [6].

For « and  belonging to {0,1}", define « « f and axf belonging to {0,1}" by

0 if (i) =0

(@< B) = ,,(z a(,-)) if (i) =1, and

i=0

ai) if fGi) =1
{0 if B(i) =0.

Also, for ae{0,1}" and Be{0,1}" such that X2, B(i) = oo, define a|Be {0,1}¥
by

(B () =

(alﬂ)(i)=a(min ‘j;:é:o plk) =i + 1})

Let « and B belong to {0,1}". Let © and x be selection functions. Then, it is clear
that
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.1) 0,«0,=0,, and
oz|0, =00T.

Lemma 5.1. If « and B are completely deterministic, then a* f is completely
deterministic.

PROOF. Let y be a mapping {0, 1}" x {0,1}" — {0, 1}" such that y(y, ) = y*d.
Then, it is clear that y is a continuous mapping such thatyy o T=T o . Therefore,
for any Se &,,,, it holds that

s (T) = I, oy=(T) S b5, (T) S g(T) + hy(T),
from which Lemma 5.1 follows.

LEMMA 5.2. Assume that L2 of(i) = 0. Then,
B (x|B)=asp.

PrOOF. Clear.
Let us introduce the following condition about y € {0, 1}";

n—1
(5.2) lim 1 2 y()>0.
n =0

n— o

The following theorem follows from Theorem 4.

THEOREM 5. Let t and x be selection functions satisfying (4.10). Assume that
0, is completely deterministic. Then, 0., is completely deterministic if and
only if 8, is completely deterministic.

COROLLARY. Let o and B be O-1sequences satisfying (5.2). Assume that « is

completely deterministic. Then, o« B is completely deterministic if and only if
B is completely deterministic.

The following theorem follows from Theorem 5, Lemma 5.1 and 5.2.

THEOREM 6. Let « be a O-1sequence and t be a selection function such that
each of 0, and o o 1 satisfies (5.2). Assume that « and 0, are completely deter-
ministic. Then, a o t is completely deterministic.

COROLLARY.Let o and B be 0-1 sequences such that each of f§ and a] B satisfies
(5.2). Assume that o and B are completely deterministic. Then, oc|[3 is completely
deterministic.

ExXAMPLE 2. Let b and ¢ be real numbers such that b= 1 and ¢ =0. Let
7(i)=[bi+c]. Then, 8, is completely deterministic [14]. Therefore,from Theorem 5,
0, is completely deterministic if
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() = [bu[ -+ [ba[bsi + €] + c2] -1 + ¢,
where by, ---, b, are real numbers = 1 and ¢y,++, ¢, are real numbers = 0.

REMARK. One can prove the *‘if”’ part of Theorem 5 direetly without using
Theorem 4. The author was informed of the idea of the direct proof by Professor
Benjamin Weiss in a letter.,
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