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ABSTRACT 

In this paper, we characterize a set of indices z = {z(0)<z(1) <- . .}  such 
that for any normal sequence (~(0), ~(1),...) of a certain type, the subsequence 
(~fr(0)), ~('r(l)), ... ) is a normal sequence of the same type. Assume that 
lim,..oox(n)/n < oo. Then, we prove that z has this property if and only if the 
0-1 sequence (O r (0),0~(1),...), where Or(i) = 1 or 0 according as i ~{ r(./) ; j =  0, 
1,.-.} or not, is completely deterministic in the sense of B. Weiss. 

1. Introduction 

Let ~ be any compact  metric space. Let N = {0, 1,2,-.-} be the set o f  non- 

negative integers. By y N, we mean the product  space o f  Z with the product  topo- 

logy. The i-th coordinate  ( i e N ) o f  ~E Z  N is denoted by ~(i). An element o f  

y N is called a sequence. Let T be the shift on ~:N; (ToO(i) = ~(i + 1) for any 

~ e X  n and i ~ N .  

By a measure on a topological  space, we always mean a probabil i ty Borel 

measure. Let W be an arb i t rary  compact  space and let Vn (n = 0, 1, . . .)  and v be 

measures on W. We say that  v, converges weakly [11] to v as n ~ oo, and denote 

w - l i r a , . . |  v, = v, if  for  any real-valued cont inuous funct ion f on W, yfdv ,  

converges to yfdv  as n ~ oo. Fo r  x E W, &, is the unit measure at x. By a non- 

degenerate measure on W, we mean a measure which is not  a unit measure. 

Let  ~ ~ y s. Let --, denote the family o f  all infinite subsets S o f  N such that 

n - I  

(1.1) / a S = w  - lim --1 y. ~r,~ 
n r  n ~ = 0  
n ..~ oo 

exists. Note  that  E~ # ~ for any ~eY~s since the space o f  measures on a compact  

metric space is compact  in the topology o f  weak convergence (see [11]). Also, note 
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that U s is a T-invariant measure for any c(eY. N and S eE~  We call ~el~N a 

stochastic sequence [3] (or sometimes a quasi-regular point in EN with respect to 

T [9]) if N e "~ In this case, we denote #~ =/~N. Let P be a non-degenerate 

measure on 1~. A stochastic sequence ~ e E  N is called a P.normal sequence if  #~ 

equals PS, the product measure o f  P on Z N. Note that i fZ  = {0, 1, . . . , r  - 1} and 

P({i}) = 1/r  for i = 0, 1, ..., r - 1, then the notion of  P-normal sequence coincides 

with the usual notion of  r-adic normal sequence. The set of  all P-normal sequences 

is denoted by Nore. A strictly increasing function frem N to N is called a selection 

function. Let z be a selection function. For  ~ eZ  N, the subsequence of  ~( selected 

by z is defined by (~ o z) (i) =~(z(i)) for any i E N and denoted by ~ o ~. Following 

yon Mises, s e e  N is called a r-collective if  

1 n - 1  1 n - 1  

(1.2) w - l i m  - -  ~ (S~( o = w - l i m  - -  ~ c5~(~(o). 
n--,oo n i = o  n-~co n i = o  

Our problem is to characterize a selection function z which satisfies the following 

conditions. Denote Norp o z = {~ o z; �9 ~ Nore}. 

CONDITION 1. Any ~ ~ Nor e is a r-collective. 

CONDITION 2. N o r e o  z c Nore .  

CONDITION 3. Nor e o ~ = Nor  e . 

Clearly, Condition 3 implies Condition 2. It is also easy to verify that Condition 2 

implies Condition 1. 

In this paper, we prove that each of the above three conditions is equivalent to 

Condition 4 stated below under a reasonable restriction that lim,-,oo z(n) /n < oo 

(Theorem 4). It should be remarked that the fact that Condition 4 implies Con- 

dition 2 under the restriction stated above was already obtained by Weiss [14] 

in 1971. 
To state Condition 4, some more notions are necessary. For  a selection function 

z, denote by 0,E {0, 1} N the 0-1 sequence defined by 

1 if  i e {~(j); j ~ N )  ( 
(1 . 3 )  O,(i) = { (i N). 

L 0 else 

That is, O,(i) = 1 if  and only if the i-th coordinate is selected as a subsequence by 

the selection function T. For  a T-invariant measure # on {0, l} N, where T is the 

shift on {0, 1} N, the entropy of  the measure-preserving transformation T on the 

measure space ({0, 1}N,p) is denoted by hu(T). That is, 
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1 
(1.4) h,(T) = lim - -  ~E - #(Fr162 

n~oc  n r r [ .0 ,1in 

where for C = (Co, Cl, "", C,-1) �9 {0, 1} n, 

(1.5) F~ = {fl�9 {0, 1)~r = ~, for i = 0 ,1 , . . . ,n  - 1). 

The above limit is known to exist [2]. Following [14], f l �9  {0, 1} N is said to be 

completely deterministic if h~(T)= 0 for any p �9 {#g; S � 9  .E#}. Now, we state 

Condition 4. 

CONDmON 4. 0, is completely deterministic. 

Note that Condition 4 is indifferent to what Y and P are. This condition is not 

only simple but also easy to check. Various types of  sequences are known to be 

completely deterministic (Example 1). It seems that the notion of  completely 

deterministic 0-1 sequence has some significance from the constructive point of 

view. In fact, we prove some closure properties of  the class of  completely deter- 

ministic 0-1 sequences under operations to construct a new sequence from other 

sequences (w 

We also remark that Theorem 2 is a sort of  extension theorem concerning 

invariant measures and has some applications to ergodic theory, which will be 

discussed elsewhere. 

Let us explain some notation used in this paper. By Y, Y.~ and Y-2, we always 

represent compact metric spaces. Note that the product space Y.~ is also a compact 

metric space. As a topology on a finite set, we always consider the discrete topology. 

We use the same notation T for shifts on different spaces. The shift on a product 

space Y~ x ~2 ~ is defined by T(oqfl)= (T~t, Tfl), where ~�9 an:l f l ~ .  Let W 

be any compact space. By C(W), we mean the Banach space consisting of  all 

real-valued continuous functions on W with the norm l[fH = sup~r Let 

q < p be non-negative integers. We consider C(Y:) as a subspace of  C(Yp) and 

C(E N) identifying f e  C(Z q) with the functions (~o, "", ~ p - l ) ~ f ( r  "", 4#-1) and 

~f(~(0) , . . . ,~(q  - 1)), where (~o, '" ,  Co- 1) �9 y:' and �9 �9 Y:, respectively. Also, 

C(E~) and C(~2 N) are considered as subspaces of  C(Y~ x Y~) in the same manner. 

Let v t (i = 1, 2) be a measure on Y~. By v~ x v2, we mean the product measure of  

vt and v2 on Y.~ x E2 N. For a measure v on Y.~ x Y~, the marginal distribution on 

Eft (i = 1,2) is denoted by v/Y.~. 
For a subset E of  a set X, E c denotes the complement of  E in X. For a finite 

set E, I E[ denotes the number of  elements in E. For n � 9  denote 



124 T. KAMAE 

N, = { 0 , 1 , . . . , n -  1}. 

For an infinite subset S of  N and a subset E of N, we denote 
1 

"as(E) = lim --~-I N. ~ E I 
n r  

/I  - ~  oD 

as(E ) =  lim --1 ] N . ~ E [  
n e $  l i  
PI"~ O0 

(I .6) 

Israel J. Math., 

a(E) = ~ ( E ) .  

In the rest of this section, we list up fundamental properties about weak con- 

vergence of  measures which will be often used in the following. See [11] for the 

proofs. Let W be any compact metric space. Then, C(W) has a countable base as 

a topological vector space. Let v. (n~N)  and v be measures on W. Then, 

w-lim._.~ov. = v if and only if lim..oo f f d v . =  f f d v  for any f belonging to a 

base of  W. Assume that w-lim._+o~v.=v. Then, for any open set D of  W, 

lim._.~o v.(D) > v(D). Also, for any bounded real-valued function f on W which is 

continuous at almost all points with respect to v, it holds that lim._.~o f f d v .  

= f f d v .  Let ~ be a mapping from W to another compact metric space W' which 

is continuous at almost all points with respect to v. Then, v o ~/-t = w-l im. .o~ 

(v, o ~ - l ) ,  where v o qJ-l's are the induced measures on W'. Particularly, 
S ~yfl S P(~,.~21/ ~ = P~, for i = 1,2, where (cq,~2)~E ~ x E~ and S t  E(~,.~). Let # be a 

T-invariant measure on y N. Then, 

(1.7) # ({~ZN;  p, = p}) = 1 or 0 

according to whether p is ergodic with respect to T or not [9]. 

2. Sequences and invariant measures 

LEMMA 2.1. Let ~i~Z N (i = 1,2) be stochastic sequences such that P~I = ~,.. 
Let D be a subset of N such that 

(2.1) a({i; iED, i +  l ~ f f } ) = 0 .  

Let D = {d o < d I < ...} and D c = {d'o < d'l < ""}. Define f l~Z N by 

cq(j) if i = dj 
(2.2) fl(i) = (i e N). 

a2(J) if i = d'j 

Then, fl is a stochastic sequence such that p# = p~, (i = 1,2). 

PROOF. It is sufficient to prove that 
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(2.3) lim l n~ I f -- f ( T ' f l ) =  fdlt~, 
n--*Qo n 1=o 

for any q e N and f E  C(Zq), since U~*~ o C(Zq) is dense in c(ZN). Let f ~  C(Zq). Let 

(2.4) E = { i ~ N ; ( i , i + l , . . . , i + q - 1 } i s c a n t a i n e d e i t h e r i n D o r i n D C } .  

It follows from (2.1) that tr(E)= 1. For i t  N, denote 

I" 1 if i ~ D  
Ui 

2 if i ~ D  c, 

vl(i ) = [D~N~I ,  and 

v2(i ) = I D ~ N , I .  

Then, from (2.2) and (2.4), for any i e E, we have 

Therefore, f ( T  fl) = f ( T  "",(~ 

n - I  n - I  

Y, f(Tifl) = Y. fT(~ + o(n) 
/ffi0 Iffi0 

v,(n) v2fn) 

= E f (T 'cq)  + E f(T'~2) + o(n) 
1=0 i=O 

= /)l(n)I)du~l. + O(Ol(n)) + l)2(n) l-fd.~ 2 + 0(/)2(71)) + o(n) 

= n _ffdlt~, + o(n). 

This completes the proof  of  (2.3). 

THEOREM 1. Let o ~ Z  N and SE'a~, assumeTdhat #~ is ergodic with respect 

to T. Then, there exists a stochastic sequence fl ~ yN such that 

as({/; co(i) = fl(i)}) = 1 

(and hence I~ s = liB). 

The idea of  the proof. Let v be any ergodic measure on Y:. Then, for any n e N, 

any open neighbourhood W (in the topology of  the weak convergence) of  v/Y: 

and any e > 0, there exists k e N such that 

1 k-.  
Z 5(~,,....r W})> 1 - ~ .  V/Zk({(~O'""~k-l)~Zk;k - n + 1 ,=o 

Let v = #s. Then, this implies that 

5(~(o ..... ~(~+._~))~W > 1 - e .  a_s J ~ N ;  k _ n  + 1 ~=j 
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Collecting such sections {j , . . . , j  + k - 1} of  integers that satisfy 

1 s+k-n 
~" ~(~t(i),...,~t(i+n- 1)) ~ W k - n + l  t=j 

for sufficiently large n's and sufficiently small W's, we can construct a subset 

D = {d o < d l  < ""} of  N such that as(D) = 1 and g,, = v, where 0q(i) = ~(di). 

Combining this fact with Lemma 1, we can prove Theorem 1. 

PRoof. Put v = p s. We take a countable base F = { f t , f 2 , ' " }  of C(YY) such that 

(2.5) IlfJll =< 1 (j = 1,2,...), and 

(2.6) f j  ~ C(Y/) (j = 1,2,...). 

Since v is ergodic with respect to T, we have 

({ In'- f I1}) (2.7) lim v ?; sup ~, f j ( T ~ )  - fjdv < = 1 
n ~ a o  l<-_j~_k i = O  

for any k = 1,2, .... Therefore, we can take rl < r2 < "" such that 

( 2 . 8 )  r k > k e ( k  = 1 , 2 , . . . ) ,  and 

(2.9) v({, ;  sup ! 1 , ' - 1  f 1 1 } )  1 ~=o f i ( T ' y ) -  f idv  < > 1 -  ~ -  ( k = 1 , 2 , . . . ) .  

Put 

(2.10) r~ {,;sup 1"~-' f I k} = ~ f j ( r ' ? )  - f jdv  < . 
l~_j~_k i = 0  

Since 

1 n--I 
v = w - l i m  - -  

n e S  n 1=o 
N"* o0 

and Fk is an open set, it follows from (2.9) that 

(2.11) _as({/; T ' ~ e r d )  > v(rk) > 1 - - -  
k "  

inductively by For  k = 1, 2, ..- and m = 1, 2, ..., define a,~ 

(2.12) a~ = min{i; Tio~eFk}, and 

k = m i n { i ; i >  k am+l = am + rk + k, T*aeFk}.  
Put 

CO 

(2.13) Ek = U 
/ n = l  

k k k {am, a m + 1, . . . ,  am + rk + k - 1} (k = 1,2, ...). 



Vol. 16, 1 9 7 3  SUBSEQUENCES OF NORMAL SEQUENCES 127 

It is clear that if i ~ Ek, then Tt~ r F k. Hence, from (2.11), 

1 
(2.14) Es(Ek) > ffs({/; T~ct e Fk}) > 1 -- - -  

k "  

Therefore, there exist 0 = hi < h 2 < " ' "  such that 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

hk >= khk-1, 

[Ek-1 ~{hk- l ,  hk-1 + 1, '" ,hk - 1}1 > k2"rk, 

h k e S for k = 2, 3,..., and 

N. n Ek I ~ 1 -- --~ for any n e S with n > hk. 

Put 

(2.19) E =  U (EkN{hk, h k + l,...,hk+ 1 - 1 ) ) .  
k = l  

For n e N ,  let t(n) denote k such that h k < n < hk+l. Let n e S  and k = t(n) >= 2. 
Then, 

(2.20) It N,I 
2_ IE~_,n{hk_l,...,hk-1)l+lEkn {hg,...,n- 1}l 
~ [Ek_ 1NNn~ [ -- hk_ 1 + leg r~N.[ - h k 

2 1 ) h k - h k _ l +  ( 1 -  k ) n - - h k  (from (2.17)and.(2.18)) ~_ (1 k-- 
4n 

~_ n-----~---hk-1 

5n 
n -- T (from (2.15)). 

Hence, as(E) = 1. Define E'  and E" by 

E' = {nee;  n = a~ ") for some m}, and 
(2.21) 

E" = {nee ' ;  n + 1",(,) + t(n) < h,(.)+l}. 
Put 

(2.22) D = 

Then, it is clear that 

(2.23) 

U {n, n + 1 , . . . ,  n + r ,( , )  + t (n)  - 1}. 
n e e  # 

a({i; leD, i + leD~}) = 0 
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since lim,_.= t (n)= oo. It is also clear from (2.13), (2.19), (2.21) and (2.22) that 

D c E and 

(2.24) E ~ D  ~ ~ {nEE;  n -- r~(.~- t(n) < h,(.) or n + rt(.)+ t(n) > h,(.~+l}. 

Let n e N and k = t(n) > 2. Then, 

k 

E 2(r I + i) 
IDnN"I  > t '=' 
I E O N, l = [ E m N, [ (from (2.24)) 

~_ 1 -  4krk le -, ~ { h k - 1 , ' " , h k -  1} I (from (2.8)) 

4 
~_ 1 - -~- (from (2.16)). 

Therefore, 

(2.25) lim I o n N . I  =1. 

This implies that a s ( D ) = l  since a s ( E ) = l .  Let D = { d o < d l < - . . }  and 

E" = {eo < el <. . -}.  For m = 0, 1,..., put c= = I O m N, .  I" Then, it follows from 

(2.22) that if 0 < j < r~( m + t(m), then 

(2.26) c,,+1 = cm + r,(,.) + fie,,) and dc~,+j =em + j .  

Define ~q eY. N by ~( i )  = ~(di) (i e N). Then, it is clear from (2.26) that 

(2.27) ct(em + j) = cq(cr, + j) if 0 < j < r,r + t(e,,). 

For j > 1, assume that t(em) >= j.  Let k = t(em). Then, 

i c_ fJ(Tlal)  -- g fj(Tlot) 
I~-C.~ l==e 

I ~ I = f j (Tt~l )  (from (2.6) and (2.27)) 
I----C,,,+r~ 

< k (from (2.5) and (2.26)). 

On the other hand, since T e,,7 e Fk from (2.12) and (2.21), it holds from (2.10) that 

I rk ."+"- f (2.29) i~ , ,  f j ( T ' ~ ) -  rk" < 

Combining (2.28) and (2.29), we have 

(2.30) f j(Tioq) - (%+1 - cm) f jdv  ~ 2k + -~-. 
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Here, we also used (2.5) and (2.26). Thus, 

I ._1 ~+'-'E (2.31) I era+ l - -  Cra i=c,. 
f j(Tlal)  - ff/v j < ~2k + 1  3 

from (2.26), (2.30) and (2.8). Since 

1 r  . - 2  r 
__ ~ fj(rtcxi ) = ~ era+ 1 --era 1 

C. z=O r a = l  Cn C r a + l  - -  r I=r 

(2.31) leads us to the conclusion that 

1 r 
(2.32) l i m -  Z 

n"*~ Cn i = 0  
fj(T'oq) = f f/v. 

f j(T'a,) ,  

Note that j is arbitrary in (2.32). Moreover since 

lim cra+a -cra  = li---m ra~') + t(em) (from (2.26)) 
taboo Cm m~oo I O n N e _ [  

__< lim r,~,)+ t(n) 
Ionu.I 

lim" ra") + t(n) (from (2.25)) 
lenu.l 

=< lim 2r,(,) 
,-.oo [E,(,)-x n { h , ( , ) - l , ' " , h t ( , ) -  1}[ 

- - -  2 
=< lim (from (2.16)) 

,-.oo t(n) ~ 

= O, 

it follows from (2.32) that 

lim 1 ,-2 f f j  - -  ~, fj(T~al) = dv ( j = l , 2 , . . . ) .  
n-*co n i=o J 

Thus, ~1 is a stochastic sequence such that p~, = v. Let a2 eZN be any stochastic 

sequence such that p,. = v (for example ~2 = cq). Applying Lemma 1.1 for D, cq 

and a2 (note (2.23)), we obtain a stochastic sequence fl ~Z N such that ~( i )= fl(i) 

if i e O. This completes the proof since as(O)= 1. 

THEOREM 2. Let v be a T-invariant measure on Z~ x Z~. Assume that fl~Z~ 

and S~E# satisfy that I~ = V/ZN2. Then, there exists a~Z~ such that S~E(,,#) 

and p~,,~) = v. Moreover, if v /Z~ is eroodic with respect to T, then the above ~t 

can be taken as a stochastic sequence. 
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Applying this theorem to a trivial case that/~ = (x, x,. . .) ,  S = N and v = # • 6 B, 

we have the following result which is known as Kakutani 's theorem [10]. 

COROLLARY (S. Kakutani). For any  T-invariant measure # on y N, there 

exists a stochastic sequence ~ e Y f l  such that It~ = It. 

PROOF OF TI-mOREM 2. Let v be a T-invariant measure on E~ x Z~. Let fl~Z~ 

and S ~ Ea satisfy that #~ = v/Z~. The latter statement of the theorem follows from 

the former half of the theorem and Theorem 1. In fact, if  v /Z[  is ergodic with 

respect to T and if we can take �9 ~E~ such that S E Ec,,a ) and s P(~.B~ = v, then 

from Theorem 1, we can take a stochastic sequence or' such that ~s({i; ct'(i) 

= ~(i)}) = 1. Then, it is clear that ~' also satisfies that S ~ 2~,,p) and It~, p) = v. 

Therefore, it is sufficient to prove the first half of the theorem. 

Take a countable base {f l , f2 , ' "}  of C(E~ x E2 N) such that 

(2.33) IlfJll =< 1 (j = 1,2,...), and 

(2.34) f j  ~ C(E{ x El) (j = 1, 2,...). 

Take a sequence of real numbers 1 > el > e2 > "'" which tends to 0. For  each 

h = 1,2,---, we can prove that there exists 7h~E~ such that 

(2.35) sup lira ~, fj(T~eh, T~fl) - f jdv  N_ ~h/2. 
l ~ j ~ h  n e S  i = 0  

n -~ Go 

We will defer the proof of this fact for a while. 

Next, for each h = 1, 2, ..., select t h > 0 such that 

(2.36) sup sup E fj(Tio~h, T~fl) - f jdv  <= eh. 
l~_j~_h n ~ S  i = 0  

n~_th 

Let k b satisfy that k I = O, 

(2.37) kh ~ S (h = 2, 3,..-), and 

{ k h _ , + 2 h }  (h = 2,3,.. .). (2.38) kh > max th, eh 

Define �9 E Y~[ as follows: 

(2.39) ~(i) = 0eh(i ) for every i e ( k h , " . , k h + ~ -  1} (h = 1,2,...). 

For  this 0~, we prove that S e E~,p) and/~,p)  = v. To prove this it is sufficient to 

prove that 
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(2.40) lim 1 n-t f - -  X fj(Tl~,Tlfl) = f f l v  (j = 1,2,...). 
neS  /'1 1=0 
n..coo 

Let j ~ 1 and e > 0 be arbitrary. Select m such that m > j  and e m < 8/7. 

Consider an arbitrary n satisfying that n E S and n __> kin+ I. Select h such that 

kh+ l < n < k h + 2 .  Clearly, j _ m < h .  Put I I = { i ~ N ; k h + 1  < i < n - j }  and 

Io = { i~N;  kh <i<= kh+l--j}. Then, it is clear from (2.34) and (2.39) that 

(2.41) fJ(Ttct' T~fl) =fJ(Ttcth+ 1, Tiff) if i ~ It ,  and 

f~(Tl~, T'fl) =f~(Tto~h, T~fl) if i E I o. 

Therefore, from (2.33), (2.38) and (2.41), it holds that 

n--1 

(2.42) ~ fj(Tte, T~fl)= ~, fj(T'Cth+t,T'fl) + ~, fj(T'eh, Tt f l )+Ct ,  
1=0 i~: It  ie Io 

where [Cll  < kh + 2j ~ k h + 2(h + 1) < kh+l " eh+l < neh. In addition, from 

(2.33), (2.36), (2.37) and (2.38), we have 

Z fj(Ti~h+l, Tip) 
l e l l  

n - 1  kh+t--1 
(2.43) = E fl(Ti~h+~,T~fl)- ~. fj(T'~h+x, T i f l ) - C 2  

i = 0  i=0  

where I C21 J --- h < k s �9 eh < neh, [C 31 < eh+t < eh and 1C4 [ S e,+, < e,. Also 

Z fAT%, Tip) 
(2.44) ~, ro 

kh+t- - t  kj ,-1 
= ~, fj(T~cth, Tiff) - X fl(Tio~h, Tiff) - C5 

i=0  f rO 

where 1C51 < J < ne . ,  I C6 ] S 8h and [C 71 < kh S kh+l" e,+l Sne , .  Combining 
(2.42), (2.43) and (2.44), we have 

~, fj(Ttoq Tiff) - fjdv < 7et, < e., 
i=0  

which completes the proof of  (2.40). 

Now, it remains to prove (2.35). We have to show that 

for any e > O, q ~ N and a finite subset F of C(Z~ • Z~), there exists ~ Z ~  such 
that 
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(2.45) sup lim n ~o f ( r ~ '  r~ f l ) -  f d v  <=e. 
f eF  neS  i =  

n ---t. O0 

The idea of the proof. We define a random mechanism by which a desired 

sequence is obtained with probability 1. Let L and R be sufficiently large integers. 

Let M = LR. Select an integer from {0, 1, ..., L -  1} with the equal probability 

1/L. Let it be t o. For k = 0 , 1 , . . . , R -  2, select ~(to + kL), or(to + kL+  1),..., 

~(t o + kL + L - 1) according to the probability 

v(" I fl(to + kL), . . . ,  fl(t o + kL + L - 1)}. 

Select an integer tl again from {0, 1, ..., L -  1} with the equal probability 1/L. 

For k = 0 , 1 , . . . , R - 2 ,  select a ( M + t l + k L ) , . . . , a ( M + h + k L + L - 1 )  ac- 

cording to the probability v{. [fl(M + tl + kL), . . . ,  fl(M + tl + k L +  L - l ) } .  

Here, each of these random choices should be done independently of the others. 

Succeeding this procedure, we can define a(i) for most i's. Define a(i) arbitrary 

if it is not defined by this procedure. 

PROOF OF (2.45). 

Let e > 0 and q ~ N be arbitrary. Without loss of generality, assume that 

(2.46) sup Ilfll -< 1. 
f e F  

Denote by X~ and Y~ (i ~ N) the projections from Z~ x E2 N to Ex and E2 defined by 

Xi( ~, 6) = ),(i) and Yi(~, 6) = (5(0, respectively, where y ~ E~ and 6 ~ Z~ v. We 

consider X~ and Y~ (i ~ N) random variables on the measure space (E~ x E2 N, v). 

Take a finite partition Q = {q j} of E2 (Q is also identified with the partition 

Yo-IQ of E~) such that 

(2.47) p s ( u  q~) = O, 

where qb. is the boundary of q j, and that 
J 

sup{If(y, cS)-f(e,~')]; f e F ,  ~ E ~ ,  c5 and 6' belong to the same 
(2.48) 

q-I Q} 
element of V T -~ < ~/3, 

t=O 

where the symbol " V "  means the least common refinement of partitions. For 

x ~22, we denote by x* the element of Q which contains x. In this sense, 

~* (i s N) is a Q-valued random variable. F o r f e  F, define 
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,_, ,Q} 
(2.49) f ,  = E,. f l  A • V T -  , 

i = 0  

where A denotes the point-wise partition of Y-~ and E,{ ] } is the conditional 

expectation under the measure v. Then, it is clear from (2.48) that 

s u s ,  N l f (e , '~ )  - f , ( e ,  ~) 1 =< ~/3,  and 
(~,~)e 1; 1 x Y2 

Select an integer L such that L > q and 2 ( q - 1 ) / L  < 8/3. Select an integer R 

such that R > 18/e. Put M = RL. Take a sequence of Z~-valued random variables 

Zo, ZI, "" which are defined on some probability space such that 

(2.51) Zo, ZD""  are independent, 

where Z, = (Z~M, ZiM+I, "" ,ZiM+n-x)  (i = O, 1, ".'), and that 

P,{ZiM E Ao, '" ,  Z~M+ M- t e A M_ a} 

(,fi - ,  = - -  ; .(Ak)" H ;.(Am) x 
L t = o  \ k = O  k= M- L+ t  

(2.52) 
R - 2  

x H P, iXo~A,+kL'" ' ,X1 . - I+A,+~L+"- ' I  
k = O  

Y~ = fl( iM + t + kL)*, ..., Y/.*_t = fl(iM + t + kL + L -  1)*}), 
I 

where ;t is any fixed measure on Y~I and P,{ [ } is the conditional probability about 

random variables. If i ~ N satisfies that 

(2.53) L -  1 < i - [ L ] M  < M -  L -  q, 
- L M J  = 

where Ix] denotes the largest integer not greater than x, then it follows from (2.52) 

that for any measurable set A of  L q, 

l L-q  1 L -q  
y~ m~a(A) + q - 1 (2.54) ~-- ]~ m,.,(A) < P,{ (Z , , . . . ,Z ,+q_, )eA}  ~ - L  t=o 

t = 0  

where 

(2.55) mi,t(A ) = P,{(X,, .-.,X,+q_t) eA I Y~ = f l ( i - t )* ,  ..., Y~-x = f l ( i - t  + L -  1)*}. 

Hence, from (2.46), it holds that, for any f e  F and i e N satisfying (2.53), 
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(2.56) 

] E(f . (Z, ,  ..., Z,+q_ 1, fl(i)*, ..., fl(i + q - 1)*)) - 

1 L-q f L -  q + i ,~o f .(Xo,. . . ,  x~_ 1, f l( i)*, '" ,  fl(i + q - 1)*) x 

x mt.t(dx o... dx~_x) l =< e/3. 

On the other  hand, we have 

f f ,  (Xo,"' ,  xq_ 1, fl(i)*,'.., fl(i + q - 1)*)m,,(dxo...  dxq_ 1) 

= Xo, "", x~_ 1, Yo,*"', Y~- 1) x 

x rni.,(dxo.., dxq_ 1)c~(#(oo.....#u + q- 1 )~ (dy~ ... dy*_ 1) 
(2.57) 

= E , { f . ( X ,  "",X,+q-1, Y,*,"', Yt+q-l)l 

Y~ = fl(i - t)*, .-., Y*-I = fl(i - t + L -  l)*} 

= E , ( f .  o T' I Y~,..., YT.-I}(T'-'P). 
Since 

({ }) M 2L q+2  o 
o i ~ N ; L - l ~ _ i -  - ~ .  ~ _ M - L - q  = M ~ 1 - - - ( ,  

it follows f rom (2.56) and (2.57) that  

1 n--1 

lim ~, E{f . (Z, , . . . ,Z ,+q_l , f l ( i )*  , ...,fl(i + ~ - i)*)} 
n-*oo t w o  

(2.58) 1 L- .  1 .-1 2e 
Y~ - -  ~ E,{ f .  o T' I Y~,..., Y~_,}(T'-'p) I < 3 L - q  + 1 t=o n ~=t 

Since the function E ,{f .  o T'[ Yo*, "", Y~- t} is continuous at any point except for 
- t  b the points belonging to the set L.I/'o I I,.J;T qi, and this set has measure 0 under  

/~  f rom (2.47), it holds that  

(2.59) 

] n + t - I  

lim - -  
n~S n l=t  
n..~ ~ 

E,{f .  o T' I Yg,..., YL*-,} (T'-'fl) 

; 

Hence, f rom (2.58), we have 
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" - 1  

lim ~, E{f,(Z,,...,Z,+,~_t, fl(i)*,...,fl(i + q -  1)*)}-- 
n~S i = 0  

. " )  O0 

_ f , v l  < "= 3 " 

For i ~ N and f e  F, put U{ = f ( r  ~ Z, r~fl), where Z = (Zo, Zl , ' " ) .  Then, it follows 

from (2.50) that 

8 
(2.61) [E(U{}-  E{f,(Z,,...,Z,+q_l, fl(i)*,...,fl(i + q - 1)*)}1 =< -~-. 

Combining (2.60) and (2.61), we have 

(2.62) l i r a  2 E{U{} - fdv  N_ e. 
n e S  i = 0  

n , ~ C O  

Put Uf = (U.f~, UfM+x, "", U{M+M'X) (i = 0, 1, ...). Then, it follows from (2.51) 

that : Y �9 Uo, U2, .. are independent, and U(,Uf, . . .  are independent. Hence the 

strong law of large number holds for UIo, U~,...; 

P, lira ~ U { - - - 1  5~ E{U~} I =0 =1.  
t n ~ o o  1=0 n i=O 

Since F is a finite set, this implies that 

P, lira f (r~z,  rifl) 1 ,-1 - - -  ~ E{Uf} = 0 for any = 1.  
~, n.., ~ i =  0 n i = 0  

In particular, there exists ct ~ Y,~ such that 

lira ]E f ( T ' a , T ' f l ) - - -  ~, E{U(} =0  
n-,Qo i = 0  n i = o  

for any f ~  F. Combining this with (2.62), we have 

sup lira ~ f ( r~e ,r~f l ) -  fdv  <8, 
f e F  n c S  i = 0  

. ' - )  r 

which completes the proof of (2.45). 

3. Two lemmas concerning disiointness 

By an endomorphism, we mean a measure-preserving transformation on an 

abstract Lebesgue space. Let U be an endomarphism on (fl, #). By h,(U), we mean 

the entropy of U (see [-2]). In this section, we shall discuss those results, which 

will be used in the next section, concerning the notion of disjointness between 
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endomorphisms due to Furstenberg [3]. It should be remarked that Lemma 3.1 

is proved following the idea used byFurstenberg in the proof  of  Theorem 1.1 in 

1"3]. However, his proof  contains a gap, which is filled by virtue of  our Lemma 3.1. 

For this reason, we write the proof  of  Lemma 3.1 in detail. Lemma 3.2 is a 

special case of  the so-called Pinsker's theorem which asserts that two endomor- 

phisms, one of  which has a completely positive entropy and the other of  which 

has entropy 0, are disjoint (see [3], [12] or [13]). 

LEMMA 3.1. Let P be a non-degenerate measure on a compact metric space Z. 

Let # be a T-invariant measure on {0,1} ~ such that h, (T)>0.  Then, there exists 

a T-invariant measure v on Z N • {0, 1} N such that 

(i) v /Z N = pN, 

(ii) v/{O, 1} N =/1, and 

(iii) X o and Yo are not stochastically independent under v, where X o and Yo 

are projections from ZNx {0,1} N to Z and {0,1}, respectively, defined by 

Xo(ot, fl ) =~(0)  and Yo(~, fl) = fl(0) (~eY: ,  fl~{0,1}N). Moreover, if  P is the 

Lebesgue measure on ~ = [0, 1], then we may choose the measure v so that a 

version of E,(Yol Xo = t} is a non-decreasing function of t which is non-constant, 

precisely E,{Yol Xo = 0 + } < E,{rol Xo = 1 - }. 

PROOF. Let us first consider the special case when Z = [0, 1] and P =  2 (the 

Lebesgue measure). Let # be a T-invariant measure on {0, 1} N such that hp(T)> O. 

Denote by M the set of  all negative integers. Let # '  be the measure on {0,1} M 

such that 

(3.1) 
#'({]/e{0,1}U;/~(i) = ~, for i =  -- n , - -  n + 1 , . . . , - -  1}) 

= # ({ps  {0,1}N; p(n + i) = r for i = -- n , -  n + 1 , . . . , -  1}) 

for any n >  1 and ~_,, ~-,+1, "", r  e {0, 1}. For  each i ~ N, define a projection Ut 

from [0, 1] N x {0, 1} u to [0, 1] by Ul(~,fl ) = ~(i). Also, for each i e M ,  define a 

projection V~ from [0, 1] N x {0, 1} M to {0, 1} by Vi(~,fl ) = fl(i). Put 

(3.2) z = 2 n x #'. 

Define a mapping f :  {0, 1} u'--~ [0, 1] by 

(3.3) f (~)  = E,,{V_~ [ V_ 2 = ~ ( -  1), V-3 = ~ ( -  2), ...}. 
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Since h,(T)  > 0, we have 

(3.4) #'{0 < f <  1} (=/~'((fl;  0 <f(f l )  < 1})) > 0. 

Define a mapping Vo: [0, 1] N x {0, 1} M ~ (0, 1} by 

1 if :~(0) <=f(fl) 

(3.5) Vo(~,P) = o e lse .  

Since f and Uo are stochastically independent under z because of (3.2), it holds 

for any t e [0, 1] that 

e , ( V o l  Uo = t} 

(3.6) 

= P , { f > t l U o = t }  

= P , { f ~  t} 

= p ' { f ~  t}, a.e. 

Thus, from (3.4) and (3.6), E,{ Vol U o = t) is a non-decreasing function of t such 

that ( vo l u o = O + ) < { Vo l U o =- l - ). 

Define a mapping ~bi : [0, 1] N x {0, 1} ~t --. [0, 1] N by (q~t(~,fl))(i) = ~(i + 1), 

where a e [ 0 , 1 ]  N, fl~{0,1} M and i z N .  Also, define a mapping q52:[0,1] N 

x {0,1} M~{0,1} ~ by 

f I/0(~,, fl) if i =  - 1 

(~2(~,fl))(i) = {(fl(i + 1) if i < - 2. 

We prove that ~b=(~b~, ~b2) is a measure-preserving transformation on the measure 

space ([0, 1] N x {0, 1}~,T). It is clear that ~i  and ~b2 are independent under r. 

Also, it is clear that 2NoqS~t=~.N. Therefore, it is sufficient to prove that 

#% ff~- t =/~,. That is to say, the distribution of (..., V-2, V_ t) coincides with the 

distribution of (..., V_ 2 o ~b2,V_ 10 ~b2), where Vi and V l 0 q~2 (i e M) are considered 

as random variables on the measure space ([0,1]N x {0,1}~,r). Note that 

V i o l a  = V~+t for i <  - 1. Therefore, (..., V_ 2 0 (02, V _ l o q ~ 2 ) = ( . . . , V _ t ,  Vo). 

Since p is T-invariant, the distribution of (..., V-a, I"-2) equals the distribution of 

(-" ,V-2,  V-t). On the other hand, 

P,{V  o = 1[ V_, = f l ( -  1),V_ z = f l ( -  2),...} 

= V,{f(fl) >_-_ UoI V_t = f l ( -  1), V_ 2 = f l ( -  2), ...) 

= V , { t >  Uo}l,=:(#) ( U o - ( ' " , V - 2 ,  V- , ) )  

= f([3) 

= P , { V _ I = I I V _ 2 = f l ( - - 1 ) , V _ 3 = f l ( - - 2 ) , . . .  } (from (3.3)) 



138 

for almost all (w.r.t. /~') 

equals the distribution of 

Define a mapping @~: 

T. KAMAE Israel J. Math., 

/3s {0, 1} u .  Thus, the distribution of  (..., V_2, V-l) 

("-, V-2o ~b2, V-lo ~b2), and hence, ~b preserves z. 

[0,1]Nx { 0 , 1 } u o [ 0 , 1 ]  N by ~Ox(~,/3)=~. Define a 

mapping ~2:[0,1]N X {0,1}M ~ {0,1} N by (~02(~, fl))(i ) = Vo(d/(oqfl)) , ( i~N).  
Let ~ = (~1, ~02). Then, it is clear that ~b o qS= To ~, where T is the shift on 

[0,1] N x {0,1} N. Define a measure v on [0,1] ~ x {0,1} N by v =To  ~b -1. Then, v 

is T-invariant, since v o T -  x = z o ~ -  ~ o T -  1 = z o ~b- a o ~b- l = z o ~ -  1 = v. It is 

clear that v/[O, 1] N = ;t N. For each iEN, let ~:  [0, 1] N x {0, 1} N-, {0, 1} be the 

projection such that Y~(~,/3) = fl(i), Then, it is clear that for each n ~ N, the dis- 

tribution of (Yo, Y1, "", Y, -0  under v equals the distribution of (Vo, Vo o ~b, ..., 

Voo~b "-~) under ~. On the other hand, since V_~o ~b+= Vo for any i e N  and �9 is 

~b-invariant, the latter coincides with the distribution of(V_,, V_n+ 1, "", 11_ 1) under 

z. Hence, v/{O, 1} N = #. Let Xo: [0, 1] N x {0, 1} N -~ [0, 1] be the projection such 

that Xo(~, fl) = ~(0). Since the distribution of (Xo, Yo) under v equals the distribu- 

tion of (Uo, Vo) under ~, Ev{Yo lXo=t}=E,{Vo lUo=t}  for any t~[0 ,1] .  

Thus, Ev{YoIXo = t} is a non-decreasing function o f t  such that E,{Yo[Xo = 0 + } 
< E,{YolXo = 1 -  }. Note that this implies that 

f] {Yol E~{YolO< Xo <s } = _1 E~ Xo = t}dt 
~---- S 

(3.7) 

1 f + ' E v { Y o l X o = t } d t = E , { Y o ] s < X o < l  } 
< 1 ~  = 

for any 0 < s < l .  

Consider next the general case when E is a compact metric space and P is a non- 

degenerate measure on Z. Since P is non-degenerate, there exists a measurable set S 

of  Y. such that 0 < P(S) < 1. There exists a measure-preserving mapping g from 

([0, 1], ;t) to (E,P) such that g-~(S)= [0,P(S)]. Define 

~: [0,1] u • {0,1}u--Z N • {0,1} ~ 

by .~(~,/3) = (?,/3), where ~(i) = 9(oe(i)) for any i e N. We prove that the measure 

v o~ -1 on Z N x {0,1} u satisfies the conditions of  our lemma. Clearly, v o~ -~ is 

T-invariant. It is also clear that v o ff-*/Z~C=P N and v o b -*/{0, 1} N =/ l .  Let 

X~ and Y~ be projections from Z u x {0, 1} u to Z and {0, 1}, respectively, defined by 

X~(~,/3) = ~(0) and Yo(0q/3) =/3(0). Then, from (3.7), 

E,oo-,{r  S} = E,(Yo 10 =< Xo =< P(S)} 

< E,{Yo ]P(S) < Xo < 1} = Evo#-, {Y~IX'oeS~}. 
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Thus, X~ and Y~ are not stochastically independent under v o ~-1 ,  which com- 

pletes the proof  of  Lemma 3.1. 

The following is put here for later reference. 

LEMMA 3.2 (see [3], [12] or [13]). Let P be a measure on a compact metric 

space ~. Let I~ be a T-invariant measure on {0, 1} s such that hu(T ) = O. Then, 

for any T-invariant measure v on Y.Mx {0,1} N such that v/Y. N = p N  and 

v/{0, 1} N = p, it holds that v = pN x p. 

4. Subsequences of  P-normal  sequences 

Let P be a non-degenerate measure on a compact metric space Y. Let z be a 

selection function. We here restate the four conditions introduced in w 

CONDITION 1. Any �9 e Nor e is a x-collective. 

CONDITION 2. Note  o z = Nor e . 

CONDITION 3. Nore o x = Nor v . 

CONDITION 4. 0 T is completely deterministic. 

Let Xo be the projection zN._, y. such that Xo(u) = u(0) (~ ~ ZN). Let u ~ y.N be a 

stochastic sequence. Then, it holds that 

(4.1) w lira 1 , -1 - - -  ~ 6~(1~ =/a~ o X o  I. 
n"*~ n l=o  

It then follows that Condition 2 implies Condition I. 

THEOREM 3. Condition 1 implies Condition 4. 

PROOF. Assume that 0, is not completely deterministic. Then, there exists 

S ~ 2et such that h # s ( T ) >  0. Let/z=/~0 s. From Lemma 3.1, there exists a T- 

invariant measure v on y N X {0, 1} ~ such that 

(4.2) v/yM = pN, 

(4.3) v/{O, 1} N = #, and 

(4.4) Xo and Yo are not stochastically independent under v, 

where Xo and Yo are the projections from yN x {0, 1} N to ~ and {0, 1}, respectively, 

defined by Xo(y,]~)= ~(0) and Yo(Y,~)= ~(0). Note that v/Y~s= pN is ergodic 

with respect to T. Applying Theorem 2 for these v, 0, and S, we can select a stochas- 

tic sequence u ~ N  such that SE-=(~,8,) and ~ 0 , ) =  v. Note that u e N o r e ,  since 
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s s N pN. 
/z, = / ~  =/~c,.0 )/X = 

We prove that ~ is not  a r-collective. If  

1 n--1 

w -  lim - -  ]~ 6~c,(o~ 
n~oo n i = o  

does not  exist, then �9 is not a z-collective. Therefore,  assume that this weak limit 

exists. It is then sufficient to prove that  there exists f e  C(X) such that 

1 "-1 1 "2-1 
(4.5) lira - -  E f ( ~ ( i ) ) #  l i m  - -  Z f ( ~ ( r ( i ) ) ) .  

. ~ o o  n 1 = o  n-~oo n 1 = o  

From (4.4), there e x i s t s f e  C(E) such that  

(4.6) E~{f(Xo) Yo} 
Eu{Yo} 

Ee{f}. 

In this, note that Eu{Yo} r 0. In fact, it follows from h,(T) > 0 that/z{Y 0 = 0} r 1. 

On the other  hand, we have 

n - I  

(4.7) Ee{f} = lim --1 Y f(ot(i)), and 
.--* oO n i=O 

1 . - - 1  
lim - -  Y'. f(~t(i))O,(i) 
. c $  n ~ = o  

E,{f(Xo)Yo} . . . .  

E.{ Yo} I " - '  

lira - -  ~ O,(i) 
n ~ S  n i = o  

(4.8) ._. co 

1 t .  

= lira Y. f(~(z(i))),  
n e S  In + 1 1=o 

where t, = max {i; T(i) < n - 1} (n = 1,2,-. .) .  Thus, (4.5) is proved by (4.6), (4.7) 

and (4.8). We complete the p roof  o f  Theorem 3. 

Next,  we prove that 

(4.9) Condition 4 implies Condition 3 under the hypothesis li--m x(n) < co .  
n-cO0 n 

The conclusion o f  (4.9) (even the converse o f  Theorem 3) is not  true in general 

unless the hypothesis lim,_.ooz(n)/n < oo. For  example, consider a selection 

function z such that l im,~o  ~(n)/n = oo is satisfied. Then, 0, is completely deter- 

ministic, since /~e. = di,, where 0 ( i ) =  0 for any i~ N. On the other  hand, it is 

easily seen that Nor e o z = EN; given x ~ X, a P-normal  sequence ~ such that  
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(ct o r (i) ---- x for any i E N is not a T-collective. The proof  of  (4.9) foUows after 

several lemmas. We first prove 

LEMMA 4.1 ([14]). Assume that 

(4.10) lim z(n) < oo. 
n.-* oo n 

Then, Condition 4 implies Condition 2. 

PROOF. Let us assume (4.10) and Condition 4. Let ~ e Norv be arbitrary. It is 

sufficient to prove that 

lira 1 .-2 f (4.11) ~ f(Tl(~ o "0)= f d P  N 
n ~ o o  n t - - -o  J 

for any q ~ N  and f ~  C(Eq). Let q ~ N and f ~  C(E q) be arbitrary. Let 

A =  {//~{0,1}N;,=o ~ / / ( i )> q}. 

Then, A is an open set. Define a mapping r E N x A ~ g q by 

( { '  // (4.12) (O(~,/~))(i) = ~  min j ;  2 /~(k) = i + 1 (i = 0 , 1 , . . . , q  - 1). 
4 = 0  

Then, ~k is a continuous mapping. Define a real-valued function g on EN x {0, 1} N 
by 

#(~,//) = J ' f ( r  and /~(0) = 1 
(4.13) 

to else. 

Clearly, # is continuous on a subset 2; N x (A u {0}), where 0(i) = 0 for any i E N. 

Since T-"(~ N x (A U {0})) (n = 0, 1,...) is an increasing family of  subsets such 

that the union equals the whole space EN x {0, 1} s, it holds that 

(4.14) v(Z N x (A u {0})) = 1 

for any T-invariant measure v on Et~ x {0, 1} t~. To prove (4.11), it is sufficient to 

prove 
n - 1  

~, g(Ttg, T~O,) I "  

(4.15) lira = lfdPN. 
n"* oo n ~  1 d 

g 0,(i) 
i = O  

For any infinite subset S' of  N, there exists a subset S of  S' such that S ~ -~(~.0-), 

since the space of  measures is compact in the topology of  weak convergence. Let 
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v = #~,.o.) and / ,  = vs .  Since 0, is completely deterministic, hu(T ) = 0. Note that 

v/YP = pN and v/{O, 1} N =/~. Therefore, v = pN x /t from Lemma 3.2. Since g is 

continuous at almost all points ofY. N x {0, 1} N with respect to v, it holds that 

n - 1  

. - t  lim --1 ~ #(TioqT~o. ) 
~, a(T~ct, TtO,) ,es n i=o f gdv 

(4.16) lim i=o = n - . ~ o  = 

. , s  . - t  ~(r)  ' 
n-.oo Y., O,(i) lim 1 , - t  - -  X o,(0 

/ = 0  n e S  /'/ t r i O  
It--cO0 

where r = {/~;/~(0) = 1}. In this, note that /ffF) > 0 since (4.10). For p ~ F  r 

it holds that 

f g(Y, [3)pN(d~) = f f(Y(t~ ?( t t ) , ' " ,  T(tq- I))pN(d?) 

(4.17) 

= f f d e  N, 

where t, = min{j;  ~,{=ofl(k) = i + 1} (i = 0, 1, ...). I f  fl ~ F ~ A, then clearly 

.[g(?,fl) PN(dT)=0. Therefore, from (4.17) and the fact that v = pN x g, 

= ~ (r  n A) f /aP N. 

Since ~(A u {0}) = 1 and 0 r F, we have 

(4.19) . ( r  n A) = ~(r).  

It follows from (4.18) and (4.19) that (4.16) equals SfdP N. Since for any infinite 

subset S' o f  N, there exists an infinite subset S of  S' as this, we complete the proof  

of  (4.15). Thus, Lemma 4.1 is proved.  

Let F = {8 e {0, 1}N; 8(0) = 1}. Then, F is a closed set. For ~ e F, let 

f m i n { i ; i ~  1 , , ( i ) = 1 }  if , ( i ) = 1  for some i > 1  

(4.20) t(fl) = (o o  else. 

Define a mapping Tr: F ~ F by 
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~'T'(B),8 if t(fl) < oo 
(4.21) Tr# / 

~fl else. 

Let W= {1, 2,... } U { oo } be the one-point compactification of  the discrete space 

{1,2,...}. For f i eF ,  define ~O(fl) e W N by 

(4.22) r (i) = t(T~-fl) (i e N). 

Then, ~O: F-~ W M is a one-to-one mapping. Let # be a T-invariant measure on 

{0, 1} N such that #(F) > 0. Define a measure/~r on F by setting 

~(s) 
(4.23) /~r(S) = /~(F) 

i for any meausrable set S c F. Let A={f le  {0, 1}N; 2~=o/~( ) = m}. It is clear that 

T r and 0 are continuous on F h A .  Since /~(F h A ) =  #(F) for any T-invariant 

measure/~ on {0, 1} N (cf. (4.14)), Tr and g, are continuous at almost all points 

with respect to #r. Moreover, O(Tr(fl)) = T(O(fl)) for any/3 e F, where in this 

equality, T represents the shift on W N. This fact, combined with the fact that ~ is 

one-to-one, shows that 

h,r(Tr) = hur o r 

On the other hand, it is known [1] that 

Therefore, we have 

(4.24) 

1 
hur(Tr) = - ~ h , ( T ) .  

h,r o ~,- ,( T) = #--~) h.( T). 

Z~=o fl(0 > 0. Let S e Ep and LEMMA 4.2. For f l eF ,  assumethatlim,-.oo 1/n , - t  �9 

# = I~. Let S' = { Y~i"='o'fl(i); n e S}. Then, we have S' e Eq,~a ) and ~t,s(a) = #r o ~b- t 

Moreover, i f  fl is completely deterministic, then ~(fl) is completely deterministic 

(note that /z(F) > 0). 

PROOF. L e t f e  C(W~). Define a function g on {0, 1} N by 

{~(~0(7)) if 7 e F  

(4.25) 0(~) = else. 

Then, O is continuous on A u {0}; at almost all points of  {0, 1} s with respect to #. 

= Zi= o fl(O" Then, F o r n e N ,  le tu .  . - t  �9 
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(4.26) 

f(f o r  if  = 

1 l i m  1 ~ -  1 - - -  Z g(Ttfl) ~(r) .os n ~--o 

I I u , , - !  
-- lim - -  ]~ f(~(T~rfl)) /gr) .~s n i=o 

n. -~  O0 

= l i m  1 ~ -  - -  Z f(O(T~-fl))  
n ~ S '  n i = o  
/ l " ~  O0 

= l i r a  1 , - I  
- -  X f ( T ~ r  

n~S" n i = 0  
n- '~  oO 

Thus, we have S'eEr and s, ~b-t. P~t#~ = Pr o Assume that fl is completely 
deterministic. For  any S ' e  ~-,~p), there exists a subset S of  the set 

{n; .~l fl(i)ES'} 
i = 0  

such that S ~ E#. Since {~i="o~fl(i); n e S) = S', it follows frcm (4.24) and the fact 

that ha~ (T) = 0 that h~,~D~(T ) = 0. Thus, ~(fl) is completely d~terministic. 

For  ~ = (~o, ~1, "" ,~q-0  ~ {0, 1} a, d~note 

10 if y(i) = 4, for i - 0, 1,..., q - 1 
(427) Zr = else. 

LEMMA 4.3. Let �9 ~ Nor v. Assume that fl ~ {0, 1} N is completely deterministic, 

and lim,-.oo 1 In ET- ~ fl(i) > O. Then, for  any infinite subset S'  of  IV, there 

exists a subset S of  S'  such that 

(4.28) lira 1 " - 1  f f - -  Y~ f(T"'ct)zg(Tifl) = f dp  N �9 zgdliSa 
nES n t=O 

n -I.  O0 

for  any f ~ C(E N) and ~ ~ D, where u i = ~)7=tofl(j) and 

O0 

(4.29) D = 1,3 {(~o,. . . ,~_1) e{0,1}~: ~ ,=  1 for some i = 0 , 1 , - . . , q -  1}. 
q = l  

PROOF. For y~{0,1} s, define ~(y)~W s and ~ r0 ' )~F  by ~(7)=~b(7') and 

2PRO') = Tr(7'), respectively, where 
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,f , o 1  

i f  i = 0 .  

There exists a subset S" of  {u~; i ~ S'} such that S" �9 E(~,~(rk~)) for any k �9 N.  Also 

there exists a subset S o f  {i; u ~ � 9  such that l i m n ~ s , . . ~ o u n / n  = b exists and 

b > 0. Clearly, S c S'. Let ~ = (40, " " , ~ q - l ) e  {0, 1} q. First, assume that 4o = 1. 

Then, for any f e  C(Z s) and k �9 N,  we have 

n - - I  

lim ~1 ~ f(T~,ct)(;(r ~ Tk)(T, fl) 
neS B I = 0  
/I .-e oo 

lim 1 "- 1 - -  E f(T"'~) Xr (T'(Tkfl)) 
neS n 1=0  

11.-I, 00 

= b  

u .  

lim --1 ~ f(T,~)Xr ) 
n e $  Yl ~ = 0  
tl --+ o0 

n - 1  

lim --1 E f(Tt~t)Xr 
n e S "  l l  i = 0  
n ....~ oo 

n - I  

= b lira --1 E f(r~a)(Xr o J/-')(T'~(Tkfl)) 
n e S  ~ ?1 i = 0  

iI --~ oo 

f d s" = b f" (Zr o ~b- 1) /%,~(rk#)) 

f S" 

= b f '(z~ o ~- 1) d(pN • ~j(Tk~)) 

b f f dP". f (xr o C,-b s, = dpr 

(from Lemma 3.2 and 4.2) 

(from Lemma 4.2) 

f :a: f a.z 
Next,  let 4o . . . . .  ~s-1 = 0 and ~s = 1 for some 1 _ s _ q - 1. Then, we have 

$--1  

Zg=Z(g~.....r o T '  - • ( 1 , 0 , . . . , 0 , ~  "" ,~q- t )o  T " - k - t  
k = 0  k . . L . . ~ _ . ~  ' 

k 

Thus, (4.28) fol lows from the first case. 
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PROOF OF (4.9). Let us assume (4.10) and Condition 4. It is sufficient to prove 

that Norp o T =Nore ,  since Lemma 4.1. Let 

(4.30) {d o < d I < ...} = {~(/); i �9 

Let X = (Xo, Xl,  " ' )  be an independent sequence of Z-valued random variables 

such that the distribution of  X~ on Y. is P for each i �9 N. Let 0t �9 Norp be arbitrary. 

Let 

(4.31) Y(i) = ~ ( J )  if i = x(j) (i �9 N). 

(Xj  if i = dj 

Then, clearly Y o x = ~. Let F be a countable base of  C(~ N) such that F = 

I,.Jq=oC(E4 ). Let f � 9  C(Ea). For ~ --(~o, "" ", ~q- 1) �9 {0, 1} q, define f~ �9 C(E N) by 

f ( ' ) (4.32) fr r ~r  ~ b~ = ~ ~ j , i = 0 , 1 , . . . , q - 1  f d(2r(bo ) X .'. X .~:,(%_,)j 
1=0 

where 2 o = P and ;t~ = J ,  for any a � 9  ~. Then, it is clear that f f~dP N-- f f d P  N 

for any r �9 {0,1}L It is also clear that 

(4.33) E{ f (V tY) }=  Y. fr 

i - 1  where u~ = Ej =o 0,(j). Note that if r = (0, 0,..., 0), then fr is a constant function 

equal to ~fdP N. Therefore, it follows from Lemma 4.3 that for any infinite subset 

S' of  N, there exists a subset S of  S' such that 

lim 1 " - 1  f f f - -  E E{ f (T 'Y ) }=  E f d P  N" xcd#o s = YaP N. 
ne.S /'1 i = O  ~ [ 0 . 1 ] q  

JI --~, O0  

This fact implies that 

lim 1 "- 1 f - -  ~, E { f ( T ' Y ) } =  f d P  N. (4.34) 
n-*oo n i f f i 0  J 

Note that the strong law of  large number holds for the sequence of  random 

variables ( f (T~Y); i  = 0, 1, ...). Therefore, (4.34) implies that 

1 "- 1 ~, 
lim - -  E f ( T ' Y ) =  fde" 

3 n--,oo t l  i = 0  

holds with probability 1. Since F is a countable set, we can take ~ � 9  such that 

o ~ = ~  and 

1 .-1 f lim -n- 2 f ( T ~ 7 ) =  f d P  N 
n"* oo i = 0  
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for any f � 9  F. Since F is a base of C(ZN), it holds that ), �9 Nore. Thus, a �9 Nore o 

which completes the proof of  (4.9). 

In conclusion, we have proved the following result. 

THEOREM 4. Under the hypothesis lim,_.~o z(n) /n < 0% Conditions 1,2,3 and 
4 are equivalent to each other. 

REMARK. It can be proved that if 0t�9 is a stochastic sequence such that the 

endomorphism T on (Z N, p~) has a completely positive entropy, or equivalently, the 

natural extension of it is a Kolmogorov automorphism, then a is a c-collective 

for any ~ such that lim,_.~ z(n)/n < ~ and O, is completely deterministic. 

5. Completely deterministic 0-1 sequences 

The notion of completely deterministic sequence is obviously extended to a more 

general case if the base space {0, 1} is replaced by a compact metric space Z That is, 

~ � 9  N is said to be completely deterministic if h,(T) = 0 for any/~ �9 {~;  S e -~}. 

EXAMPLE 1. The following types of sequences are known to be completely 

deterministic: 

1. Toeplitz type sequences [5] 

2. generalized Morse sequences [8] 

3. sequences associated with substitutions, [4] or [7] 

4. sequences generated by finite automata in the sense of  [6]. 

For a and fl belonging to {0, 1} N, define ct ,,-- fl and ~,fl belonging to {0, 1} N by 

(~ *- fl) (i) fl \ j  ffi o ~(j) if ~(i) = 1, and 

{;(i) i f f l ( i )= l  
(~* fl) (i) = if  f l ( i )  = O. 

Also, for a �9 {0, 1} N and fl �9 {0, 1} N such that E,~o fl(i) = 0% define a lfl �9 {0, 1} N 

by 

(~[B)(i)=~ rain j;  • f l ( k ) = i  + 1 . 
k = O  

Let a and fi belong to {0, 1} ~. Let c and~ be selection functions. Then, it is clear 

that 
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(5.1) 

LEMMA 5.1. 

deterministic. 

T. KAMAE Israel J. Math., 

0, ,,- 0~ = 0, ~ ~, and 

 lo,= o 

I f  ~ and fl are completely deterministic, then ~* fl is completely 

PROOF. Let ~b be a mapping (0, 1} ~ x (0, 1}N~ {0, 1} N such that ~(?,5) = ?.6. 

Then, it is clear that ~k is a continuous mapping such that ~k o T = T o ~k. Therefore, 

for any S ~ E~.#, it holds that 

h~s.(T) = h,~, #)o r ~_ hpsc~#XT ) <= h,s(T) + hg~(T), 

from which Lemma 5.1 follows. 

LEMMA 5.2. Assume that ~ = o f l ( i ) =  o0. Then, 

= 

PROOF. Clear. 

Let us introduce the following condition about ? ~ {0, 1}N; 

(5.2) lim 1 .-1 - -  E r ( i )  > 0 .  
n t=o n..~ o~ 

The following theorem follows from Theorem 4. 

THEOREM 5. Let ~ and x be selection functions satisfying (4.10). Assume that 

O, is completely deterministic. Then, 0,o~ is completely deterministic i f  and 

only i f  O~ is completely deterministic. 

COROLLARY. Let ~ and fl be 0-1sequences satisfying (5.2). Assume that ~ is 

completely deterministic. Then, ~ ,,-fl is completely deterministic i f  and only i f  

fl is completely deterministic. 

The following theorem follows from Theorem 5, Lemma 5.1 and 5.2. 

THEOREM 6. Let ~ be a O-lsequence and r be a selection function such that 

each of  O, and ~ o ~ satisfies (5.2). Assume that o~ and O, are completely deter- 

ministic. Then, ~ o ~ is completely deterministic. 

COROLLARY.Let o~ and fl be 0-1 sequences such that each of  fl and ~] fl satisfies 

(5.2). Assume that ~ and fl are completely deterministic. Then, gift is completely 

deterministic. 

EXAMPLE 2. Let b and c be real numbers such that b => 1 and c >__ 0. Let 

r = [bi + c]. Then, 0, is completely deterministic [141. Therefore, from Theorem 5, 

0, is completely deterministic if 
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x(i) = [bk[ ... [b2[bl i  + Cl"l q- C2] " ' "  ] "l- Ck] , 

where bx, "", bk are real numbers > 1 and c i , ' " , c~  are real numbers ~_ 0. 

REMARK. One can prove the " i f "  part  of  Theorem 5 directly without using 

Theorem 4. The author was informed of  the idea of  the direct p roof  by Professor 

Benjamin Weiss in a letter. 
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